On Ostrowski's disk theorem and lower bounds for the smallest eigenvalues and singular values
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 125-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper refines the classical Ostrowski disk theorem and suggests lower bounds for the smallest-in-modulus eigenvalue and the smallest singular value of a square matrix under certain diagonal dominance conditions. A lower bound for the smallest-in-modulus eigenvalue of a product of $m\ge2$ matrices satisfying joint diagonal dominance conditions is obtained. The particular cases of the bounds suggested that correspond to the infinity norm are discussed and compared with some known results. Bibl. 9 titles.
@article{ZNSL_2010_382_a9,
     author = {L. Yu. Kolotilina},
     title = {On {Ostrowski's} disk theorem and lower bounds for the smallest eigenvalues and singular values},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {125--140},
     year = {2010},
     volume = {382},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a9/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On Ostrowski's disk theorem and lower bounds for the smallest eigenvalues and singular values
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 125
EP  - 140
VL  - 382
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a9/
LA  - ru
ID  - ZNSL_2010_382_a9
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On Ostrowski's disk theorem and lower bounds for the smallest eigenvalues and singular values
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 125-140
%V 382
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a9/
%G ru
%F ZNSL_2010_382_a9
L. Yu. Kolotilina. On Ostrowski's disk theorem and lower bounds for the smallest eigenvalues and singular values. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 125-140. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a9/

[1] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York etc., 1979 | MR | Zbl

[2] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991 | MR | Zbl

[3] Hou-Biao Li, Ting-Zhu Huang, Xing-Ping Liu, Hong Li, “Singularity, Wielandt's lemma and singular values”, J. Comput. Appl. Math., 234 (2010), 2943–2952 | DOI | MR | Zbl

[4] M. Marcus, H. Minc, Matrix Theory and Matrix Inequalities, Allyn and Bacon, Inc., Boston, 1964 | MR | Zbl

[5] H. Minc, Nonnegative Matrices, John Wiley and Sons, New York etc., 1988 | MR

[6] A. M. Ostrowski, “Über die Determinanten mit überwiegender Hauptdiagonale”, Comment. Math. Helv., 10 (1937), 69–96 | DOI | MR | Zbl

[7] A. M. Ostrowski, “Sur les conditions générales pour la régularité des matrices”, Rend. Mat. e Appl. (5), 10 (1951), 156–168 | MR | Zbl

[8] A. M. Ostrowski, “On some metrical properties of operator matrices and matrices partitioned into blocks”, J. Math. Anal., 2 (1961), 161–209 | DOI | MR | Zbl

[9] C. L. Wang, S. J. Zhang, “The block lower bounds for the smallest singular value”, Int. J. Comput. Math., 82 (2005), 313–319 | DOI | MR | Zbl