On determinantal diagonal dominance conditions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 104-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper suggests sufficient nonsingularity conditions for matrices in terms of certain determinantal relations of diagonal dominance type, which improve and generalize some known results. These conditions are used to describe new eigenvalue inclusion sets and to derive new two-sided bounds on the determinants of matrices satisfying them. Bibl. 8 titles.
@article{ZNSL_2010_382_a8,
     author = {L. Yu. Kolotilina},
     title = {On determinantal diagonal dominance conditions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--124},
     year = {2010},
     volume = {382},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a8/}
}
TY  - JOUR
AU  - L. Yu. Kolotilina
TI  - On determinantal diagonal dominance conditions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 104
EP  - 124
VL  - 382
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a8/
LA  - ru
ID  - ZNSL_2010_382_a8
ER  - 
%0 Journal Article
%A L. Yu. Kolotilina
%T On determinantal diagonal dominance conditions
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 104-124
%V 382
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a8/
%G ru
%F ZNSL_2010_382_a8
L. Yu. Kolotilina. On determinantal diagonal dominance conditions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 104-124. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a8/

[1] J. L. Brenner, “Bounds for determinants”, Proc. Nat. Acad. Sci. USA, 40 (1954), 452–454 | DOI | MR | Zbl

[2] L. Yu. Kolotilina, “Generalizations of the Ostrowski–Brauer theorem”, Linear Algebra Appl., 364 (2003), 65–80 | DOI | MR | Zbl

[3] A. Melman, “Spectral inclusion sets for structured matrices”, Linear Algebra Appl., 431 (2009), 633–656 | DOI | MR | Zbl

[4] A. Melman, “An alternative to the Brauer set”, Linear and Multilinear Algebra, 58 (2010), 377–385 | DOI | MR | Zbl

[5] R. Oeder, “Problem E 949”, Amer. Math. Monthly, 58 (1951), 37 | DOI | MR

[6] A. Ostrowski, “Sur la détermination des bornes inférieures pour une classe des déterminants”, Bull. Sci. Math. Helv. (2), 61 (1937), 19–32 | Zbl

[7] B. Price, “Bounds for determinants with dominant principal diagonal”, Proc. Amer. Math. Soc., 2 (1951), 497–502 | DOI | MR | Zbl

[8] R. S. Varga, Geršgorin and His Circles, Springer, Berlin etc., 2004 | MR