A characterization of Toeplitz and Hankel circulants
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 71-81

Voir la notice de l'article provenant de la source Math-Net.Ru

A number of propositions of the following type is proved: A Toeplitz matrix $T$ is a circulant if and only if $T$ has an eigenvector $e$ with all the components equal to one. These propositions characterize the circulants (and, more generally, the $\phi$-circulants), as well as their Hankel counterparts, in the sets of all Toeplitz and Hankel matrices, respectively. Bibl. 2 titles.
@article{ZNSL_2010_382_a6,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {A characterization of {Toeplitz} and {Hankel} circulants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a6/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - A characterization of Toeplitz and Hankel circulants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 71
EP  - 81
VL  - 382
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a6/
LA  - ru
ID  - ZNSL_2010_382_a6
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A V. N. Chugunov
%T A characterization of Toeplitz and Hankel circulants
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 71-81
%V 382
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a6/
%G ru
%F ZNSL_2010_382_a6
Kh. D. Ikramov; V. N. Chugunov. A characterization of Toeplitz and Hankel circulants. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 71-81. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a6/