A characterization of Toeplitz and Hankel circulants
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 71-81
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A number of propositions of the following type is proved: A Toeplitz matrix $T$ is a circulant if and only if $T$ has an eigenvector $e$ with all the components equal to one. These propositions characterize the circulants (and, more generally, the $\phi$-circulants), as well as their Hankel counterparts, in the sets of all Toeplitz and Hankel matrices, respectively. Bibl. 2 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_382_a6,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {A characterization of {Toeplitz} and {Hankel} circulants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {71--81},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a6/}
}
                      
                      
                    Kh. D. Ikramov; V. N. Chugunov. A characterization of Toeplitz and Hankel circulants. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 71-81. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a6/