On conjugate-normal $(T+H)$-circulants and skew-circulants
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 60-70
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A matrix $A$ is called a $(T+H)$-circulant (skew-circulant) if $A$ can be represented as a sum of a conventional (that is, Toeplitz) and a ankel circulants (respectively, skew-circulants). A complete description of the sets of conjugate-normal $(T+H)$-circulants and skew-circulants is given. Bibl. 3 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_382_a5,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {On conjugate-normal $(T+H)$-circulants and skew-circulants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--70},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a5/}
}
                      
                      
                    Kh. D. Ikramov; V. N. Chugunov. On conjugate-normal $(T+H)$-circulants and skew-circulants. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 60-70. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a5/