On conjugate-normal $(T+H)$-circulants and skew-circulants
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 60-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A matrix $A$ is called a $(T+H)$-circulant (skew-circulant) if $A$ can be represented as a sum of a conventional (that is, Toeplitz) and a ankel circulants (respectively, skew-circulants). A complete description of the sets of conjugate-normal $(T+H)$-circulants and skew-circulants is given. Bibl. 3 titles.
@article{ZNSL_2010_382_a5,
     author = {Kh. D. Ikramov and V. N. Chugunov},
     title = {On conjugate-normal $(T+H)$-circulants and skew-circulants},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--70},
     year = {2010},
     volume = {382},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a5/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
AU  - V. N. Chugunov
TI  - On conjugate-normal $(T+H)$-circulants and skew-circulants
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 60
EP  - 70
VL  - 382
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a5/
LA  - ru
ID  - ZNSL_2010_382_a5
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%A V. N. Chugunov
%T On conjugate-normal $(T+H)$-circulants and skew-circulants
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 60-70
%V 382
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a5/
%G ru
%F ZNSL_2010_382_a5
Kh. D. Ikramov; V. N. Chugunov. On conjugate-normal $(T+H)$-circulants and skew-circulants. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 60-70. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a5/

[1] V. N. Chugunov, Kh. D. Ikramov, “The conjugate-normal Toeplitz problem”, Linear Algebra Appl., 430 (2009), 2467–2473 | DOI | MR | Zbl

[2] Kh. D. Ikramov, V. N. Chugunov, “O teplitsevykh matritsakh, yavlyayuschikhsya odnovremenno normalnymi i sopryazhenno-normalnymi”, Zap. nauchn. semin. POMI, 367, 2009, 67–74

[3] V. N. Chugunov, Kh. D. Ikramov, “A contribution to the normal Hankel problem”, Linear Algebra Appl., 430 (2009), 2094–2101 | DOI | MR | Zbl