On latently real matrices and block quaternions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 47-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). The differences in the systems of elementary divisors of these two matrix classes are found that explain why latently real matrices can be made real via unitary similarities, whereas, normally, block quaternions cannot. Bibl. 5 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_382_a3,
     author = {Kh. D. Ikramov},
     title = {On latently real matrices and block quaternions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/}
}
                      
                      
                    Kh. D. Ikramov. On latently real matrices and block quaternions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 47-54. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/