On latently real matrices and block quaternions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 47-54
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). The differences in the systems of elementary divisors of these two matrix classes are found that explain why latently real matrices can be made real via unitary similarities, whereas, normally, block quaternions cannot. Bibl. 5 titles.
@article{ZNSL_2010_382_a3,
author = {Kh. D. Ikramov},
title = {On latently real matrices and block quaternions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--54},
year = {2010},
volume = {382},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/}
}
Kh. D. Ikramov. On latently real matrices and block quaternions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 47-54. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/
[1] Kh. D. Ikramov, “O konechnom ratsionalnom kriterii neprivodimosti matrits”, Vestn. Mosk. un-ta. Ser. 15, Vychisl. matematika i kibernetika, 2007, no. 3, 16–18 | MR | Zbl
[2] Kh. D. Ikramov, “O kompleksnykh matritsakh, unitarno podobnykh veschestvennym matritsam”, Mat. zametki, 87:6 (2010), 840–847 | DOI
[3] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR
[4] A. I. Maltsev, Osnovy lineinoi algebry, Nauka, M., 1975
[5] Kh. D. Ikramov, “Chetnost zhordanovoi struktury blochnykh kvaternionov s veschestvennym spektrom i ee vychislitelnye sledstviya”, Zhurnal vychisl. matem. i matem. fiz., 37:9 (1997), 1029–1033 | MR | Zbl