On latently real matrices and block quaternions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 47-54

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a complex $n\times n$ matrix $A$ be unitarily similar to its entrywise conjugate matrix $\overline A$. If the unitary matrix $P$ in the relation $\overline A=P^*AP$ can be chosen symmetric (skew-symmetric), then $A$ is called a latently real matrix (respectively, a generalized block quaternion). The differences in the systems of elementary divisors of these two matrix classes are found that explain why latently real matrices can be made real via unitary similarities, whereas, normally, block quaternions cannot. Bibl. 5 titles.
@article{ZNSL_2010_382_a3,
     author = {Kh. D. Ikramov},
     title = {On latently real matrices and block quaternions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--54},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On latently real matrices and block quaternions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 47
EP  - 54
VL  - 382
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/
LA  - ru
ID  - ZNSL_2010_382_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On latently real matrices and block quaternions
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 47-54
%V 382
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/
%G ru
%F ZNSL_2010_382_a3
Kh. D. Ikramov. On latently real matrices and block quaternions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 47-54. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a3/