On sufficient conditions for the existence of a unitary congruence transformation of a given complex matrix into a real one
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 38-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A complex $n\times n$ matrix $A$ is said to be nonderogatory if the degree of its minimal polynomial is equal to the degree of the characteristic polynomial. The aim of the paper is to prove the following proposition: Let $A\overline A$ be a nonderogatory matrix with real positive spectrum. Then $A$ can be made real by a unitary congruence transformation if and only if $A$ and $\overline A$ are unitarily congruent. Bibl. 5 titles.
@article{ZNSL_2010_382_a2,
     author = {Kh. D. Ikramov},
     title = {On sufficient conditions for the existence of a~unitary congruence transformation of a~given complex matrix into a~real one},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--46},
     year = {2010},
     volume = {382},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On sufficient conditions for the existence of a unitary congruence transformation of a given complex matrix into a real one
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 38
EP  - 46
VL  - 382
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/
LA  - ru
ID  - ZNSL_2010_382_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On sufficient conditions for the existence of a unitary congruence transformation of a given complex matrix into a real one
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 38-46
%V 382
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/
%G ru
%F ZNSL_2010_382_a2
Kh. D. Ikramov. On sufficient conditions for the existence of a unitary congruence transformation of a given complex matrix into a real one. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 38-46. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/

[1] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR

[2] Kh. D. Ikramov, “A note on complex matrices that are unitarily congruent to real matrices”, Linear Algebra Appl. (to appear) | MR

[3] A. George, Kh. D. Ikramov, E. V. Matushkina, W.-P. Tang, “On a QR-like algorithm for some structured eigenvalue problems”, SIAM J. Matrix Anal. Appl., 16 (1995), 1107–1126 | DOI | MR | Zbl

[4] Y. Hong, R. A. Horn, “A canonical form for matrices under consimilarity”, Linear Algebra Appl., 102 (1988), 143–168 | DOI | MR | Zbl

[5] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1966 | MR