On sufficient conditions for the existence of a~unitary congruence transformation of a~given complex matrix into a~real one
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 38-46

Voir la notice de l'article provenant de la source Math-Net.Ru

A complex $n\times n$ matrix $A$ is said to be nonderogatory if the degree of its minimal polynomial is equal to the degree of the characteristic polynomial. The aim of the paper is to prove the following proposition: Let $A\overline A$ be a nonderogatory matrix with real positive spectrum. Then $A$ can be made real by a unitary congruence transformation if and only if $A$ and $\overline A$ are unitarily congruent. Bibl. 5 titles.
@article{ZNSL_2010_382_a2,
     author = {Kh. D. Ikramov},
     title = {On sufficient conditions for the existence of a~unitary congruence transformation of a~given complex matrix into a~real one},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {38--46},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - On sufficient conditions for the existence of a~unitary congruence transformation of a~given complex matrix into a~real one
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 38
EP  - 46
VL  - 382
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/
LA  - ru
ID  - ZNSL_2010_382_a2
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T On sufficient conditions for the existence of a~unitary congruence transformation of a~given complex matrix into a~real one
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 38-46
%V 382
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/
%G ru
%F ZNSL_2010_382_a2
Kh. D. Ikramov. On sufficient conditions for the existence of a~unitary congruence transformation of a~given complex matrix into a~real one. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 38-46. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a2/