Embedded spaces and wavelets on a manifold
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 15-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Simple methods for constructing systems of embedded spline spaces on a manifold are suggested, and wavelet decompositions of such systems are discussed. The results obtained are applied to constructing embedded spline spaces of Lagrange type. Bibl. 8 titles.
@article{ZNSL_2010_382_a1,
     author = {Yu. K. Demjanovich},
     title = {Embedded spaces and wavelets on a~manifold},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--37},
     year = {2010},
     volume = {382},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/}
}
TY  - JOUR
AU  - Yu. K. Demjanovich
TI  - Embedded spaces and wavelets on a manifold
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 15
EP  - 37
VL  - 382
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/
LA  - ru
ID  - ZNSL_2010_382_a1
ER  - 
%0 Journal Article
%A Yu. K. Demjanovich
%T Embedded spaces and wavelets on a manifold
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 15-37
%V 382
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/
%G ru
%F ZNSL_2010_382_a1
Yu. K. Demjanovich. Embedded spaces and wavelets on a manifold. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 15-37. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/

[1] S. Malla, Veivlety v obrabotke signalov, M., 2003

[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, M., 2005 | MR

[3] I. E. Maksimenko, M. A. Skopina, “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR | Zbl

[4] J. Maes, A. Bultheel, “Stability analysis of biorthogonal multiwavelets whose duals are not in $L_2$ and its application to local semiorthogonal lifting”, Appl. Numer. Math., 58:8 (2008), 1186–1211 | DOI | MR | Zbl

[5] Yu. K. Demyanovich, “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Doklady RAN, 401:4 (2005), 439–442 | MR | Zbl

[6] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, SPb., 1994 | MR

[7] Yu. K. Demyanovich, “Veivlety na mnogoobrazii”, Doklady RAN, 421:2 (2009), 156–160 | MR

[8] N. Stinrod, Topologiya kosykh proizvedenii, M., 1953