@article{ZNSL_2010_382_a1,
author = {Yu. K. Demjanovich},
title = {Embedded spaces and wavelets on a~manifold},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--37},
year = {2010},
volume = {382},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/}
}
Yu. K. Demjanovich. Embedded spaces and wavelets on a manifold. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 15-37. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/
[1] S. Malla, Veivlety v obrabotke signalov, M., 2003
[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, M., 2005 | MR
[3] I. E. Maksimenko, M. A. Skopina, “Mnogomernye periodicheskie vspleski”, Algebra i analiz, 15:2 (2003), 1–39 | MR | Zbl
[4] J. Maes, A. Bultheel, “Stability analysis of biorthogonal multiwavelets whose duals are not in $L_2$ and its application to local semiorthogonal lifting”, Appl. Numer. Math., 58:8 (2008), 1186–1211 | DOI | MR | Zbl
[5] Yu. K. Demyanovich, “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Doklady RAN, 401:4 (2005), 439–442 | MR | Zbl
[6] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, SPb., 1994 | MR
[7] Yu. K. Demyanovich, “Veivlety na mnogoobrazii”, Doklady RAN, 421:2 (2009), 156–160 | MR
[8] N. Stinrod, Topologiya kosykh proizvedenii, M., 1953