Embedded spaces and wavelets on a~manifold
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 15-37

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple methods for constructing systems of embedded spline spaces on a manifold are suggested, and wavelet decompositions of such systems are discussed. The results obtained are applied to constructing embedded spline spaces of Lagrange type. Bibl. 8 titles.
@article{ZNSL_2010_382_a1,
     author = {Yu. K. Demjanovich},
     title = {Embedded spaces and wavelets on a~manifold},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--37},
     publisher = {mathdoc},
     volume = {382},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/}
}
TY  - JOUR
AU  - Yu. K. Demjanovich
TI  - Embedded spaces and wavelets on a~manifold
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 15
EP  - 37
VL  - 382
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/
LA  - ru
ID  - ZNSL_2010_382_a1
ER  - 
%0 Journal Article
%A Yu. K. Demjanovich
%T Embedded spaces and wavelets on a~manifold
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 15-37
%V 382
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/
%G ru
%F ZNSL_2010_382_a1
Yu. K. Demjanovich. Embedded spaces and wavelets on a~manifold. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 15-37. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a1/