On the region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class of typically real finctions
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Investigations in the well-known class $T$ of typically real functions $f(z)$ in the disk $U=\{z\colon|z|<1\}$ are continued. The region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class $T$ is investigated. The region of values of $f'(z_1)$ in the class of functions $f\in T$ with fixed values $c_2, c_3$ and $f(z_1)$ is determined. Bibl. 10 titles.
@article{ZNSL_2010_382_a0,
     author = {E. G. Goluzina},
     title = {On the region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class of typically real finctions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     year = {2010},
     volume = {382},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a0/}
}
TY  - JOUR
AU  - E. G. Goluzina
TI  - On the region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class of typically real finctions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 14
VL  - 382
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a0/
LA  - ru
ID  - ZNSL_2010_382_a0
ER  - 
%0 Journal Article
%A E. G. Goluzina
%T On the region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class of typically real finctions
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-14
%V 382
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a0/
%G ru
%F ZNSL_2010_382_a0
E. G. Goluzina. On the region of values of the system $\{c_2,c_3,f(z_1),f'(z_1)\}$ in the class of typically real finctions. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIII, Tome 382 (2010), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2010_382_a0/

[1] V. A. Andreeva, N. A. Lebedev, A. V. Stovbun, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v nekotorykh klassakh regulyarnykh funktsii”, Vestn. LGU, ser. mat., mekh. i astr., 1961, no. 7(2), 8–22 | MR | Zbl

[2] E. G. Goluzina, “O mnozhestvakh znachenii sistem $\{f(z_1),f'(z_1)\}$ i $\{f(z_1),f(z_2)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 254, 1998, 65–75 | MR | Zbl

[3] E. G. Goluzina, “O mnozhestvakh znachenii sistem $\{f(z_1),f(z_2),f'(z_2)\}$ i $\{f(z_1),f'(z_1),f''(z_1)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 286, 2002, 48–61 | MR | Zbl

[4] E. G. Goluzina, “Ob odnoi teoreme iskazheniya dlya tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 357, 2008, 33–45 | Zbl

[5] E. G. Goluzina, “O mnozhestvakh znachenii sistem $\{f(z_0),f'(z_0),c_2\}$ i $\{f(r),f'(r),f(z_0)\}$ v klasse tipichno veschestvennykh funktsii”, Zap. nauchn. semin. POMI, 276, 2001, 41–51 | MR | Zbl

[6] M. S. Robertson, “On the coefficients of a typically real function”, Bull. Amer. Math. Soc., 41:8 (1935), 565–572 | DOI | MR | Zbl

[7] G. M. Goluzin, “O tipichno veschestvennykh funktsiyakh”, Mat. cb., 27(69):2 (1950), 201–218 | MR | Zbl

[8] M. G. Krein, A. A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, M., 1973

[9] E. G. Goluzina, “Ob oblastyakh znachenii nekotorykh sistem funktsionalov v klasse tipichno veschestvennykh funktsii”, Vestn. LGU, ser. mat., mekh. i astr., 1965, no. 7(2), 45–62 | MR | Zbl

[10] F. R. Gantmakher, Teoriya matrits, 3-e izd., M., 1967