Local structure of 7 and 8-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 97-111
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We show, that if graph on $n$ vertices is mimimally and contraction critically $k$-connected, then it has at least $n/2$ vertices of degree $k$ for $k=7,8$. Bibl. 17 titles.
@article{ZNSL_2010_381_a5,
     author = {S. A. Obraztsova and A. V. Pastor},
     title = {Local structure of~7 and 8-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {97--111},
     year = {2010},
     volume = {381},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a5/}
}
TY  - JOUR
AU  - S. A. Obraztsova
AU  - A. V. Pastor
TI  - Local structure of 7 and 8-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 97
EP  - 111
VL  - 381
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a5/
LA  - ru
ID  - ZNSL_2010_381_a5
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%A A. V. Pastor
%T Local structure of 7 and 8-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 97-111
%V 381
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a5/
%G ru
%F ZNSL_2010_381_a5
S. A. Obraztsova; A. V. Pastor. Local structure of 7 and 8-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 97-111. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a5/

[1] K. Ando, “A Local structure theorem on 5-connected graphs”, J. Graph Theory, 60 (2009), 99–129 | DOI | MR | Zbl

[2] K. Ando, A. Kaneko, K. Kawarabayashi, “Vertices of degree 6 in a contraction critically 6-connected graphs”, Discrete Mathematics, 273 (2003), 55–69 | DOI | MR | Zbl

[3] Y. Egawa, “Contractible edges in $n$-connected graphs with minimum degree greater than or equal to $\frac{5n}4$”, Graphs Combin., 7 (1991), 15–21 | DOI | MR | Zbl

[4] R. Halin, “A theorem on $n$-connected graphs”, J. Comb. Theory, 7 (1969), 150–154 | DOI | MR | Zbl

[5] R. Halin, “On the structure of $n$-connected graphs”, Recent Progress in Combinatorics, ed. W. T. Tutte, Academic Press, London–New York, 1969, 91–102 | MR

[6] M. Fontet, “Graphes 4-essentiels”, C. R. Acad. Sci. Paris Ser. A, 287 (1978), 289–290 | MR | Zbl

[7] M. Kriesell, “A degree sum condition for the existence of a contractible edge in a $k$-connected graph”, J. Combin. Theory Ser. B, 82:1 (2001), 81–101 | DOI | MR | Zbl

[8] N. Martinov, “A recursive characterization of the 4-connected graphs”, Discrete Mathematics, 84 (1990), 105–108 | DOI | MR | Zbl

[9] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224 (German) | DOI | MR | Zbl

[10] C. Qin, X. Yuan, J. Su, “Some properties of contraction-critical 5-connected graphs”, Discrete Mathematics, 308 (2008), 5742–5756 | DOI | MR | Zbl

[11] C. Qin, X. Yuan, J. Su, “Triangles in contraction critical 5-connected graphs”, Australas. J. Combin., 33 (2005), 139–146 | MR | Zbl

[12] C. Thomassen, “Nonseparating cycles in $k$-connected graphs”, J. Graph Theory, 5 (1981), 351–354 | DOI | MR | Zbl

[13] W. T. Tutte, “A theory of 3-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR

[14] X. Yuan, J. Su, “Contractible edges in 7-connected graphs”, Graphs and Combinatorics, 21 (2005), 445–457 | DOI | MR | Zbl

[15] M. Li, X. Yuan, J. Su, “The number of vertices of degree 7 in a contraction-critical 7-connected graph”, Discrete Mathematics, 308 (2008), 6262–6268 | DOI | MR | Zbl

[16] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR | Zbl

[17] S. A. Obraztsova, “O lokalnoi strukture 5 i 6-svyaznykh grafov”, Zap. nauchn. semin. POMI, 381, 2010, 88–96