Local structure of~5 and 6-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 88-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove, that if graph on $n$ vertices is mimimally and contraction critically 5-connected, then it has $4n/7$ vertices of degree 5. We also prove, that if graph on $n$ vertices is mimimally and contraction critically 6-connected, then it has $n/2$ vertices of degree 6. Bibl. 7 titles.
@article{ZNSL_2010_381_a4,
author = {S. A. Obraztsova},
title = {Local structure of~5 and 6-connected graphs},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--96},
publisher = {mathdoc},
volume = {381},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/}
}
S. A. Obraztsova. Local structure of~5 and 6-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 88-96. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/