Local structure of 5 and 6-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 88-96
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove, that if graph on $n$ vertices is mimimally and contraction critically 5-connected, then it has $4n/7$ vertices of degree 5. We also prove, that if graph on $n$ vertices is mimimally and contraction critically 6-connected, then it has $n/2$ vertices of degree 6. Bibl. 7 titles.
@article{ZNSL_2010_381_a4,
     author = {S. A. Obraztsova},
     title = {Local structure of~5 and 6-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--96},
     year = {2010},
     volume = {381},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/}
}
TY  - JOUR
AU  - S. A. Obraztsova
TI  - Local structure of 5 and 6-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 88
EP  - 96
VL  - 381
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/
LA  - ru
ID  - ZNSL_2010_381_a4
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%T Local structure of 5 and 6-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 88-96
%V 381
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/
%G ru
%F ZNSL_2010_381_a4
S. A. Obraztsova. Local structure of 5 and 6-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 88-96. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/

[1] R. Halin, “A theorem on $n$-connected graphs”, J. Comb. Theory, 7 (1969), 150–154 | DOI | MR | Zbl

[2] W. T. Tutte, “A theory of 3-connected graphs”, Indag. Math., 23 (1961), 441–455 | MR

[3] M. Fontet, “Graphes 4-essentiels”, C. R. Acad. Sci. Paris A, 287 (1978), 289–290 | MR | Zbl

[4] N. Martinov, “A recursive characterization of the 4-connected graphs”, Discrete Math., 84 (1990), 105–108 | DOI | MR | Zbl

[5] W. Mader, “Ecken Vom Gard $n$ in minimalen $n$-fach zusammenhangenden Graphen”, Arch. Math. (Basel), 23 (1972), 219–224 (German) | DOI | MR | Zbl

[6] K. Ando, “A Local structure theorem on $5$-connected graphs”, J. Graph Theory, 60 (2009), 99–129 | DOI | MR | Zbl

[7] D. V. Karpov, A. V. Pastor, “O strukture $k$-svyaznogo grafa”, Zap. nauchn. semin. POMI, 266, 2000, 76–106 | MR | Zbl