Local structure of~5 and 6-connected graphs
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 88-96

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove, that if graph on $n$ vertices is mimimally and contraction critically 5-connected, then it has $4n/7$ vertices of degree 5. We also prove, that if graph on $n$ vertices is mimimally and contraction critically 6-connected, then it has $n/2$ vertices of degree 6. Bibl. 7 titles.
@article{ZNSL_2010_381_a4,
     author = {S. A. Obraztsova},
     title = {Local structure of~5 and 6-connected graphs},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--96},
     publisher = {mathdoc},
     volume = {381},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/}
}
TY  - JOUR
AU  - S. A. Obraztsova
TI  - Local structure of~5 and 6-connected graphs
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 88
EP  - 96
VL  - 381
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/
LA  - ru
ID  - ZNSL_2010_381_a4
ER  - 
%0 Journal Article
%A S. A. Obraztsova
%T Local structure of~5 and 6-connected graphs
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 88-96
%V 381
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/
%G ru
%F ZNSL_2010_381_a4
S. A. Obraztsova. Local structure of~5 and 6-connected graphs. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part II, Tome 381 (2010), pp. 88-96. http://geodesic.mathdoc.fr/item/ZNSL_2010_381_a4/