@article{ZNSL_2010_380_a3,
author = {G. L. Zavorokhin and A. I. Nazarov},
title = {On elastic waves in a~wedge},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {45--52},
year = {2010},
volume = {380},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/}
}
G. L. Zavorokhin; A. I. Nazarov. On elastic waves in a wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 45-52. http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/
[1] P. E. Lagasse, “Analysis of a Dispersion-Free Guide for Elastic Waves”, Electron. Lett., 8:15 (1972), 372–373 | DOI
[2] S. L. Moss, A. A. Maradudin, S. L. Cunningham, “Vibrational Edge Modes for Wedges with Arbitrary Interior Angles”, Phys. Rev. B, 8:6 (1973), 2999–3008 | DOI | MR
[3] H. F. Tiersten, D. Rubin, “On the Fundamental Antisymmetric Mode of the Wedge Guide”, Proc. IEEE Ultrason. Symp., 1974, 117–120
[4] V. V. Krylov, “Geometro-akusticheskii podkhod k opisaniyu lokalizovannykh mod kolebanii uprugogo klina”, ZhTF, 60:2 (1990), 1–7
[5] Lord Rayleigh (J. W. Strutt), “On Waves Propagating Along the Plane Surface of an Elastic Solid”, Proc. London Math. Soc., 17 (1885), 4–11 | DOI
[6] I. V. Kamotskii, “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i Analiz, 20:1 (2008), 86–92 | MR
[7] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR