On elastic waves in a wedge
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 45-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The existence of waves propagating along the edge of the elastic wedge was established by many authors by physically rigorous arguments on the base of numerical computations. The mathematically rigorous proof for wedge with aperture angle less than $\pi/2$ was presented by I. Kamotskii. We amplify the I. Kamotskii result and prove the existence of the fundamental modes for some range of aperture angles greater than $\pi/2$. Bibl. 7 titles.
@article{ZNSL_2010_380_a3,
     author = {G. L. Zavorokhin and A. I. Nazarov},
     title = {On elastic waves in a~wedge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--52},
     year = {2010},
     volume = {380},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/}
}
TY  - JOUR
AU  - G. L. Zavorokhin
AU  - A. I. Nazarov
TI  - On elastic waves in a wedge
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 45
EP  - 52
VL  - 380
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/
LA  - ru
ID  - ZNSL_2010_380_a3
ER  - 
%0 Journal Article
%A G. L. Zavorokhin
%A A. I. Nazarov
%T On elastic waves in a wedge
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 45-52
%V 380
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/
%G ru
%F ZNSL_2010_380_a3
G. L. Zavorokhin; A. I. Nazarov. On elastic waves in a wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 45-52. http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/

[1] P. E. Lagasse, “Analysis of a Dispersion-Free Guide for Elastic Waves”, Electron. Lett., 8:15 (1972), 372–373 | DOI

[2] S. L. Moss, A. A. Maradudin, S. L. Cunningham, “Vibrational Edge Modes for Wedges with Arbitrary Interior Angles”, Phys. Rev. B, 8:6 (1973), 2999–3008 | DOI | MR

[3] H. F. Tiersten, D. Rubin, “On the Fundamental Antisymmetric Mode of the Wedge Guide”, Proc. IEEE Ultrason. Symp., 1974, 117–120

[4] V. V. Krylov, “Geometro-akusticheskii podkhod k opisaniyu lokalizovannykh mod kolebanii uprugogo klina”, ZhTF, 60:2 (1990), 1–7

[5] Lord Rayleigh (J. W. Strutt), “On Waves Propagating Along the Plane Surface of an Elastic Solid”, Proc. London Math. Soc., 17 (1885), 4–11 | DOI

[6] I. V. Kamotskii, “O poverkhnostnoi volne, beguschei vdol rebra uprugogo klina”, Algebra i Analiz, 20:1 (2008), 86–92 | MR

[7] M. Sh. Birman, M. Z. Solomyak, Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR