On elastic waves in a~wedge
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 45-52
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The existence of waves propagating along the edge of the elastic wedge was established by many authors by physically rigorous arguments on the base of numerical computations. The mathematically rigorous proof for wedge with aperture angle less than $\pi/2$ was presented by I. Kamotskii. 
We amplify the I. Kamotskii result and prove the existence of the fundamental modes for some range of aperture angles greater than $\pi/2$. Bibl. 7 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_380_a3,
     author = {G. L. Zavorokhin and A. I. Nazarov},
     title = {On elastic waves in a~wedge},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {380},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/}
}
                      
                      
                    G. L. Zavorokhin; A. I. Nazarov. On elastic waves in a~wedge. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 45-52. http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a3/