@article{ZNSL_2010_380_a1,
author = {M. I. Belishev},
title = {On reconstruction of {Riemannian} manifold via boundary data: theory and plan of numerical testing},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {8--30},
year = {2010},
volume = {380},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a1/}
}
M. I. Belishev. On reconstruction of Riemannian manifold via boundary data: theory and plan of numerical testing. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 40, Tome 380 (2010), pp. 8-30. http://geodesic.mathdoc.fr/item/ZNSL_2010_380_a1/
[1] S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Upravlyaemost v zapolnennoi oblasti dlya mnogomernogo volnovogo uravneniya s singulyarnym upravleniem”, Zap. nauch. semin. POMI, 210, 1993, 3–14
[2] M. I. Belishev, “K obosnovaniyu pravila Gyuigensa”, Zap. nauch. semin. POMI, 218, 1994, 17–24 | MR | Zbl
[3] M. I. Belishev, “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl
[4] M. I. Belishev, “On relations between spectral and dynamical inverse data”, J. Inverse and Ill-Posed Problems, 9:6 (2001), 547–565 | DOI | MR | Zbl
[5] M. I. Belishev, “O svyazi dannykh dinamicheskikh i spektralnykh obratnykh zadach”, Zap. nauch. semin. POMI, 297, 2003, 30–48 | MR | Zbl
[6] M. I. Belishev, “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl
[7] M. I. Belishev, M. N. Demchenko, “Time-optimal reconstruction of Riemannian manifold via boundary electromagnetic measurements”, Inverse Problems, 26 (2010) (to appear)
[8] D. Gromol, W. Klingenberg, W. Meyer, Riemannische Geometrie im Grossen, Springer, Berlin, 1968 | MR | Zbl
[9] W. Klingenberg, Riemannian geometry, de Gruyer Studies in Mathematics, 1, Walter de Gruyter, 1982 | MR | Zbl