Comparison of the Hill's method with the seismic depth migration by the Gaussian beam summation method
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 39, Tome 379 (2010), pp. 88-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The mathematical basement of the Hill's method of prestack depth migration is analyzed. It is shown that this method should be classified as the ray based Kirchhoff migration with so called “fat” rays, that is where the rays are substituted by isolated Gaussian beams centered on the rays and associated somehow with the input data on the seismic surface. That makes essential difference with our approach to seismic depth migration based on Gaussian beam summation method. We display on numerical examples the results of implementation of basic Hill's idea in the wave field computations. Bibl. 10 titles.
@article{ZNSL_2010_379_a4,
     author = {M. M. Popov and P. M. Popov},
     title = {Comparison of the {Hill's} method with the seismic depth migration by the {Gaussian} beam summation method},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {88--102},
     year = {2010},
     volume = {379},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a4/}
}
TY  - JOUR
AU  - M. M. Popov
AU  - P. M. Popov
TI  - Comparison of the Hill's method with the seismic depth migration by the Gaussian beam summation method
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 88
EP  - 102
VL  - 379
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a4/
LA  - ru
ID  - ZNSL_2010_379_a4
ER  - 
%0 Journal Article
%A M. M. Popov
%A P. M. Popov
%T Comparison of the Hill's method with the seismic depth migration by the Gaussian beam summation method
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 88-102
%V 379
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a4/
%G ru
%F ZNSL_2010_379_a4
M. M. Popov; P. M. Popov. Comparison of the Hill's method with the seismic depth migration by the Gaussian beam summation method. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 39, Tome 379 (2010), pp. 88-102. http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a4/

[1] V. M. Babich, M. M. Popov, “Metod summirovaniya gaussovykh puchkov”, Obzor, Izvestiya VUZov. Radiofizika, 32:12 (1989), 1447–1466 | MR

[2] A. P. Kachalov, M. M. Popov, “Primenenie metoda summirovaniya gaussovykh puchkov dlya rascheta vysokochastotnykh volnovykh polei”, DAN SSSR, 258:5 (1981), 1097–1100

[3] M. M. Popov, “Novyi metod rascheta volnovykh polei v vysokochastotnom priblizhenii”, Zap. nauchn. seminarov LOMI, 104, 1981, 195–216 | MR | Zbl

[4] M. M. Popov, N. M. Semchenok, A. R. Verdel, P. M. Popov, “Metod summirovaniya gaussovykh puchkov v zadachakh seismicheskoi migratsii”, DAN, 416:6 (2007), 822–825 | Zbl

[5] S. Brandsberg-Dahl, M. V. de Hoop, B. Ursin, “Focusing in dip and $AvA$ compensation on scattering-angle/azimuth common image gathers”, Geophysics, 68 (2003), 232–254 | DOI

[6] S. H. Gray, “Gaussian beam migration of common-shot records”, Geophysics, 70 (2005), S71–S77 | DOI

[7] N. R. Hill, “Gaussian beam migration”, Geophysics, 55 (1990), 1416–1428 | DOI

[8] N. R. Hill, “Prestack Gaussian-beam depth migration”, Geophysics, 66 (2001), 1240–1250 | DOI

[9] M. M. Popov, N. M. Semtchenok, P. M. Popov, A. R. Verdel, “Reverse Time Migration with Gaussian Beams and Velocity Analysis Applications”, EAGE Rome 2008, Extended Abstracts, v. F048, 2008

[10] M. M. Popov, N. M. Semtchenok, P. M. Popov, A. R. Verdel, “Depth migration by the Gaussian beam summation method”, Geophysics, 75 (2010), 581–593 | DOI