About the slow waves in curvilinear fluid layers
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 39, Tome 379 (2010), pp. 67-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The slow wave can propagate in thin fluid layers surrounded by elastic media. This wave possesses dispersion and its velocity is equal to zero for null frequency. In order to investigate this wave, we consider several fluid layers between elastic media: (1) a plane layer, (2) cylindrical layer along element of cylinder, (3) cylindrical layer along directrix, and (4) spherical layer. In all cases we derive the expressions of velocities of the slow waves and compare these expressions. The slow waves carry big energy and are of great interest for investigation of waves propagating between holes. Bibl. 6 titles.
@article{ZNSL_2010_379_a3,
     author = {L. A. Molotkov},
     title = {About the slow waves in curvilinear fluid layers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--87},
     year = {2010},
     volume = {379},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a3/}
}
TY  - JOUR
AU  - L. A. Molotkov
TI  - About the slow waves in curvilinear fluid layers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 67
EP  - 87
VL  - 379
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a3/
LA  - ru
ID  - ZNSL_2010_379_a3
ER  - 
%0 Journal Article
%A L. A. Molotkov
%T About the slow waves in curvilinear fluid layers
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 67-87
%V 379
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a3/
%G ru
%F ZNSL_2010_379_a3
L. A. Molotkov. About the slow waves in curvilinear fluid layers. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 39, Tome 379 (2010), pp. 67-87. http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a3/

[1] P. V. Krauklis, “O nekotorykh nizkochastotnykh kolebaniyakh zhidkogo sloya v uprugoi srede”, PMM, 26:6 (1962), 1111–1115

[2] K. D. Mahrer, F. J. Mauk, “Seismic wave motion for a new model of hydraulic fracture with an induced low velocity zone”, J. Geophys. Res., 92:8 (1987), 9293–9309 | DOI

[3] L. A. Molotkov, V. P. Krauklis, “O dispersionnykh kharakteristikakh normalnykh voln v sloistykh modelyakh treschinovatykh sred”, Vopr. dinam. teor. raspr. seism. voln, 28 (1989), 22–28

[4] L. A. Molotkov, Issledovanie rasprostraneniya voln v poristykh i treschinovatykh sredakh na osnove effektivnykh modelei Bio i sloistykh sred, Nauka, SPb, 2001

[5] G. I. Petrashen, L. A. Molotkov, P. V. Krauklis, Volny v sloisto-odnorodnykh izotropnykh uprugikh sredakh, v. II, Nauka, Leningrad, 1985

[6] N. Ya. Kirpichnikova, L. A. Molotkov, “O skorosti volny Releya, rasprostranyayuscheisya vdol krivolineinykh poverkhnostei”, Zap. nauchn. semin. POMI, 369, 2009, 48–63