Quasiphotons of waves on the surface of the heavy liquid
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 39, Tome 379 (2010), pp. 5-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Quasiphotons of waves on the surface of the heavy liquid is constructed by the formal power series techniques. Bibl. 17 titles.
@article{ZNSL_2010_379_a0,
     author = {V. M. Babich and A. I. Popov},
     title = {Quasiphotons of waves on the surface of the heavy liquid},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--23},
     year = {2010},
     volume = {379},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a0/}
}
TY  - JOUR
AU  - V. M. Babich
AU  - A. I. Popov
TI  - Quasiphotons of waves on the surface of the heavy liquid
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 23
VL  - 379
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a0/
LA  - ru
ID  - ZNSL_2010_379_a0
ER  - 
%0 Journal Article
%A V. M. Babich
%A A. I. Popov
%T Quasiphotons of waves on the surface of the heavy liquid
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-23
%V 379
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a0/
%G ru
%F ZNSL_2010_379_a0
V. M. Babich; A. I. Popov. Quasiphotons of waves on the surface of the heavy liquid. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 39, Tome 379 (2010), pp. 5-23. http://geodesic.mathdoc.fr/item/ZNSL_2010_379_a0/

[1] V. M. Babich, Yu. P. Danilov, “Postroenie asimptotiki resheniya uravneniya Shredingera, sosredotochennoi v okrestnosti klassicheskoi traektorii”, Zap. nauchn. semin. LOMI, 15, 1969, 47–65 | MR | Zbl

[2] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | MR

[3] A. P. Kachalov, “Sistema koordinat pri opisanii kvazifotonov”, Zap. nauchn. semin. LOMI, 140, 1984, 73–76 | MR | Zbl

[4] V. V. Belov, A. Yu. Grifonov, A. V. Shapovalov, “Kvaziklassicheskoe traektorno-kogerentnoe priblizhenie dlya uravnenii tipa Khartri”, Teor. i mat. fizika, 130:3 (2002), 460–492 | DOI | MR | Zbl

[5] V. M. Babich, V. S. Buldyrev, I. A. Molotkov, Prostranstvenno-vremennoi luchevoi metod: lineinye i nelineinye volny, Izdatelstvo LGU, L., 1985 | MR | Zbl

[6] V. M. Babich, “Kvazifotony i prostranstvenno-vremennoi luchevoi metod”, Zap. nauchn. semin. POMI, 342, 2008, 5–13 | MR | Zbl

[7] M. M. Gulo, N. A. Umov, Prosveschenie, M., 1977

[8] L. I. Sedov, Mekhanika sploshnoi sredy, v. 1, Nauka, Fizmatlit, M., 1983

[9] V. M. Babich, V. V. Ulin, “Kompleksnyi prostranstvenno-vremennoi luchevoi metod i kvazifotony”, Zap. nauchn. semin. LOMI, 117, 1981, 5–11 | MR

[10] J. Ralston, “Gaussian beams and the propagation of singularities”, MAA Studies Math., 21, Englewood Cliffs, N.Y., 1982, 206–248 | MR

[11] V. G. Bagrov, V. V. Belov, A. Yu. Trifonov, “The semiclassical trajectory-coherent approximation in quantum mechanics”, Ann. Phys. (NY), 246:2 (1996), 231–290 | DOI | MR | Zbl

[12] A. P. Kachalov, “Nestatsionarnye elektromagnitnye gaussovy puchki v neodnorodnoi anizotropnoi srede”, Zap. nauchn. semin. POMI, 264, 2000, 83–100 | MR | Zbl

[13] V. M. Babich, A. V. Poskryakov, “O kvazifotonakh voln Releya”, Zap. nauchn. semin. POMI, 332, 2006, 7–18 | MR | Zbl

[14] S. Bokhner, U. T. Martin, Funktsii mnogikh kompleksnykh peremennykh, M., 1951

[15] V. M. Babich, V. S. Buldyrev, Asimptoticheskie metody v zadachakh diffraktsii korotkikh voln, M., 1972

[16] J. B. Keller, “Surface waves on water of nonuniform depth”, J. Fluid Mech., 6 (1958), 607–614 | DOI | MR

[17] A. P. Katchalov, Ya. V. Kurylev, M. Lassas, Inverse Boundary Spectral Problems, Chapman and Hall/CRC Monogr. and Surv. in Pure and Appl. Math., 123, Chapman and Hall/CRC, Boca Raton, 2001 | MR | Zbl