Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 111-132

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is a part of the project suggested by A. M. Vershik and the author and aimed to combine the known results on the representation theory of finite and infinite symmetric groups and a circle of results related to the quantum inverse scattering method and Bethe ansatz. In this first part, we consider the simplest spectral properties of a distinguished operator in the group algebra of the symmetric group, which we call the periodic Coxeter Laplacian. Namely, we study this operator in the two-row representations of symmetric groups and in the “ferromagnetic” asymptotic mode. Bibl. 11 titles.
@article{ZNSL_2010_378_a8,
     author = {N. V. Tsilevich},
     title = {Spectral properties of the periodic {Coxeter} {Laplacian} in the two-row ferromagnetic case},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--132},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/}
}
TY  - JOUR
AU  - N. V. Tsilevich
TI  - Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 111
EP  - 132
VL  - 378
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/
LA  - en
ID  - ZNSL_2010_378_a8
ER  - 
%0 Journal Article
%A N. V. Tsilevich
%T Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 111-132
%V 378
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/
%G en
%F ZNSL_2010_378_a8
N. V. Tsilevich. Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 111-132. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/