Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 111-132
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is a part of the project suggested by A. M. Vershik and the author and aimed to combine the known results on the representation theory of finite and infinite symmetric groups and a circle of results related to the quantum inverse scattering method and Bethe ansatz. In this first part, we consider the simplest spectral properties of a distinguished operator in the group algebra of the symmetric group, which we call the periodic Coxeter Laplacian. Namely, we study this operator in the two-row representations of symmetric groups and in the “ferromagnetic” asymptotic mode. Bibl. 11 titles.
@article{ZNSL_2010_378_a8,
author = {N. V. Tsilevich},
title = {Spectral properties of the periodic {Coxeter} {Laplacian} in the two-row ferromagnetic case},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {111--132},
publisher = {mathdoc},
volume = {378},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/}
}
TY - JOUR AU - N. V. Tsilevich TI - Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 111 EP - 132 VL - 378 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/ LA - en ID - ZNSL_2010_378_a8 ER -
N. V. Tsilevich. Spectral properties of the periodic Coxeter Laplacian in the two-row ferromagnetic case. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 111-132. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a8/