@article{ZNSL_2010_378_a7,
author = {G. Olshanski},
title = {Laguerre and {Meixner} symmetric functions, and infinite-dimensional diffusion processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--110},
year = {2010},
volume = {378},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a7/}
}
G. Olshanski. Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 81-110. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a7/
[1] A. Borodin, G. Olshanski, “Distributions on partitions, point processes and the hypergeometric kernel”, Comm. Math. Phys., 211 (2000), 335–358, arXiv: math.RT/9904010 | DOI | MR | Zbl
[2] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. Math., 161 (2005), 1–104, arXiv: math/0109194 | DOI | MR
[3] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics, Europ. Math. Soc., Zürich, 2005, 73–94, arXiv: math/0409333 | MR | Zbl
[4] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135 (2006), 84–152, arXiv: math-ph/0409075 | DOI | MR | Zbl
[5] A. Borodin, G. Olshanski, “Stochastic dynamics related to Plancherel measure on partitions”, Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Transl. (2), 217, eds. V. Kaimanovich, A. Lodkin, 2006, 9–21, arXiv: math-ph/0402064 | MR | Zbl
[6] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields, 144 (2009), 281–318, arXiv: 0706.1034 | DOI | MR | Zbl
[7] A. Borodin, G. Olshanski, Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary, arXiv: 1009.2029
[8] F. J. Dyson, “A Brownian-motion model for the eigenvalues of a random matrix”, J. Math. Phys., 3 (1962), 1191–1198 | DOI | MR | Zbl
[9] B. Eie, “The generalized Bessel process corresponding to an Ornstein–Uhlenbeck process”, Scand. J. Stat., 10 (1983), 247–250 | MR | Zbl
[10] K. Itô, H. P. McKean, Diffusion Processes and Their Sample Paths, Springer, 1965 | Zbl
[11] M. Katori, H. Tanemura, “Zeros of Airy function and relaxation process”, J. Stat. Phys., 136 (2009), 1177–1204, arXiv: 0906.3666 | DOI | MR | Zbl
[12] M. Katori, H. Tanemura, “Non-equilibrium dynamics of Dyson's model with an infinite number of particles”, Comm. Math. Phys., 293 (2010), 469–497, arXiv: 0812.4108 | DOI | MR | Zbl
[13] M. Katori, H. Tanemura, Noncolliding squared Bessel processes and Weierstrass canonical products for entire functions, arXiv: 1008.0144
[14] M. Katori, H. Tanemura, “Noncolliding processes, matrix-valued processes and determinantal processes”, Sugaku Expositions (to appear) , arXiv: 1005.0533 | MR | Zbl
[15] S. Kerov, G. Olshanski, “Polynomial functions on the set of Young diagrams”, C. R. Acad. Sci. Paris Sér. I, 319 (1994), 121–126 | MR | Zbl
[16] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 773–778 | MR | Zbl
[17] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158 (2004), 551–642, arXiv: math/0312270[math.RT] | DOI | MR | Zbl
[18] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, arXiv: math/9602214[math.CA]
[19] M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris Sér. I, 312:6 (1991), 425–428 | MR | Zbl
[20] M. Lassalle, “Polynômes de Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I, 313:9 (1991), 579–582 | MR | Zbl
[21] M. Lassalle, “Polynômes de Laguerre généralisés”, C. R. Acad. Sci. Paris Sér. I, 312:10 (1991), 725–728 | MR | Zbl
[22] I. G. Macdonald, Hypergeometric functions, Unpublished manuscript, about 1987
[23] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, 1995 | MR | Zbl
[24] A. Okounkov, “Infinite wedge and measures on partitions”, Selecta Math., 7 (2001), 1–25, arXiv: math/9907127[math.RT] | DOI | MR
[25] G. Olshanski, A. Regev, A. Vershik, “Frobenius–Schur functions”, Studies in Memory of Issai Schur., Progress Math., 210, eds. A. Joseph, A. Melnikov, R. Rentschler, Birkhäuser, 2003, 251–300, arXiv: math/0110077[math.CO] | MR
[26] H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials, arXiv: 0902.3561
[27] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lect. Notes Statist., 146, Springer, 2000 | DOI | MR | Zbl
[28] H. Spohn, “Interacting Brownian particles: a study of Dyson's model”, Hydrodynamic Behavior and Interacting Particle Systems, IMA Volumes in Mathematics and its Applications, 9, ed. G. Papanicolaou, Springer-Verlag, Berlin, 1987, 151–179 | DOI | MR | Zbl