Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 81-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Laguerre symmetric functions introduced in the note are indexed by arbitrary partitions and depend on two continuous parameters. The top degree homogeneous component of every Laguerre symmetric function coincides with the Schur function with the same index. Thus, the Laguerre symmetric functions form a two-parameter family of inhomogeneous bases in the algebra of symmetric functions. These new symmetric functions are obtained from the $N$-variate symmetric polynomials of the same name by a procedure of analytic continuation. The Laguerre symmetric functions are eigenvectors of a second order differential operator, which depends on the same two parameters and serves as the infinitesimal generator of an infinite-dimensional diffusion process $X(t)$. The process $X(t)$ admits approximation by some jump processes related to one more new family of symmetric functions, the Meixner symmetric functions. In equilibrium, the process $X(t)$ can be interpreted as a time-dependent point process on the punctured real line $\mathbb R\setminus\{0\}$, and the point configurations may be interpreted as doubly infinite collections of particles of two opposite charges and with log-gas-type interaction. The dynamical correlation functions of the equilibrium process have determinantal form: they are given by minors of the so-called extended Whittaker kernel, introduced earlier in a paper by Borodin and the author. Bibl. 28 titles.
@article{ZNSL_2010_378_a7,
     author = {G. Olshanski},
     title = {Laguerre and {Meixner} symmetric functions, and infinite-dimensional diffusion processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {81--110},
     year = {2010},
     volume = {378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a7/}
}
TY  - JOUR
AU  - G. Olshanski
TI  - Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 81
EP  - 110
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a7/
LA  - en
ID  - ZNSL_2010_378_a7
ER  - 
%0 Journal Article
%A G. Olshanski
%T Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 81-110
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a7/
%G en
%F ZNSL_2010_378_a7
G. Olshanski. Laguerre and Meixner symmetric functions, and infinite-dimensional diffusion processes. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 81-110. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a7/

[1] A. Borodin, G. Olshanski, “Distributions on partitions, point processes and the hypergeometric kernel”, Comm. Math. Phys., 211 (2000), 335–358, arXiv: math.RT/9904010 | DOI | MR | Zbl

[2] A. Borodin, G. Olshanski, “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. Math., 161 (2005), 1–104, arXiv: math/0109194 | DOI | MR

[3] A. Borodin, G. Olshanski, “Representation theory and random point processes”, European Congress of Mathematics, Europ. Math. Soc., Zürich, 2005, 73–94, arXiv: math/0409333 | MR | Zbl

[4] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135 (2006), 84–152, arXiv: math-ph/0409075 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Stochastic dynamics related to Plancherel measure on partitions”, Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math. Soc. Transl. (2), 217, eds. V. Kaimanovich, A. Lodkin, 2006, 9–21, arXiv: math-ph/0402064 | MR | Zbl

[6] A. Borodin, G. Olshanski, “Infinite-dimensional diffusions as limits of random walks on partitions”, Probab. Theory Related Fields, 144 (2009), 281–318, arXiv: 0706.1034 | DOI | MR | Zbl

[7] A. Borodin, G. Olshanski, Markov processes on the path space of the Gelfand–Tsetlin graph and on its boundary, arXiv: 1009.2029

[8] F. J. Dyson, “A Brownian-motion model for the eigenvalues of a random matrix”, J. Math. Phys., 3 (1962), 1191–1198 | DOI | MR | Zbl

[9] B. Eie, “The generalized Bessel process corresponding to an Ornstein–Uhlenbeck process”, Scand. J. Stat., 10 (1983), 247–250 | MR | Zbl

[10] K. Itô, H. P. McKean, Diffusion Processes and Their Sample Paths, Springer, 1965 | Zbl

[11] M. Katori, H. Tanemura, “Zeros of Airy function and relaxation process”, J. Stat. Phys., 136 (2009), 1177–1204, arXiv: 0906.3666 | DOI | MR | Zbl

[12] M. Katori, H. Tanemura, “Non-equilibrium dynamics of Dyson's model with an infinite number of particles”, Comm. Math. Phys., 293 (2010), 469–497, arXiv: 0812.4108 | DOI | MR | Zbl

[13] M. Katori, H. Tanemura, Noncolliding squared Bessel processes and Weierstrass canonical products for entire functions, arXiv: 1008.0144

[14] M. Katori, H. Tanemura, “Noncolliding processes, matrix-valued processes and determinantal processes”, Sugaku Expositions (to appear) , arXiv: 1005.0533 | MR | Zbl

[15] S. Kerov, G. Olshanski, “Polynomial functions on the set of Young diagrams”, C. R. Acad. Sci. Paris Sér. I, 319 (1994), 121–126 | MR | Zbl

[16] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group. A deformation of the regular representation”, C. R. Acad. Sci. Paris Sér. I, 316 (1993), 773–778 | MR | Zbl

[17] S. Kerov, G. Olshanski, A. Vershik, “Harmonic analysis on the infinite symmetric group”, Invent. Math., 158 (2004), 551–642, arXiv: math/0312270[math.RT] | DOI | MR | Zbl

[18] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, arXiv: math/9602214[math.CA]

[19] M. Lassalle, “Polynômes de Jacobi généralisés”, C. R. Acad. Sci. Paris Sér. I, 312:6 (1991), 425–428 | MR | Zbl

[20] M. Lassalle, “Polynômes de Hermite généralisés”, C. R. Acad. Sci. Paris Sér. I, 313:9 (1991), 579–582 | MR | Zbl

[21] M. Lassalle, “Polynômes de Laguerre généralisés”, C. R. Acad. Sci. Paris Sér. I, 312:10 (1991), 725–728 | MR | Zbl

[22] I. G. Macdonald, Hypergeometric functions, Unpublished manuscript, about 1987

[23] I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Univ. Press, 1995 | MR | Zbl

[24] A. Okounkov, “Infinite wedge and measures on partitions”, Selecta Math., 7 (2001), 1–25, arXiv: math/9907127[math.RT] | DOI | MR

[25] G. Olshanski, A. Regev, A. Vershik, “Frobenius–Schur functions”, Studies in Memory of Issai Schur., Progress Math., 210, eds. A. Joseph, A. Melnikov, R. Rentschler, Birkhäuser, 2003, 251–300, arXiv: math/0110077[math.CO] | MR

[26] H. Osada, Interacting Brownian motions in infinite dimensions with logarithmic interaction potentials, arXiv: 0902.3561

[27] W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lect. Notes Statist., 146, Springer, 2000 | DOI | MR | Zbl

[28] H. Spohn, “Interacting Brownian particles: a study of Dyson's model”, Hydrodynamic Behavior and Interacting Particle Systems, IMA Volumes in Mathematics and its Applications, 9, ed. G. Papanicolaou, Springer-Verlag, Berlin, 1987, 151–179 | DOI | MR | Zbl