On the beta function of the tube of the light cone
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct the beta function of the Hermitian symmetric space $\mathrm O(n,2)/\mathrm O(n)\times\mathrm O(2)$, or, equivalently, of the tube $(\operatorname{Re}z_0)^2> (\operatorname{Re}z_1)^2+\dots+(\operatorname{Re}z_n)^2$ in $\mathbb C^{n+1}$. Bibl. 11 titles.
@article{ZNSL_2010_378_a6,
     author = {Yu. A. Neretin},
     title = {On the beta function of the tube of the light cone},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the beta function of the tube of the light cone
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 73
EP  - 80
VL  - 378
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/
LA  - en
ID  - ZNSL_2010_378_a6
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the beta function of the tube of the light cone
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 73-80
%V 378
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/
%G en
%F ZNSL_2010_378_a6
Yu. A. Neretin. On the beta function of the tube of the light cone. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/