On the beta function of the tube of the light cone
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct the beta function of the Hermitian symmetric space $\mathrm O(n,2)/\mathrm O(n)\times\mathrm O(2)$, or, equivalently, of the tube $(\operatorname{Re}z_0)^2> (\operatorname{Re}z_1)^2+\dots+(\operatorname{Re}z_n)^2$ in $\mathbb C^{n+1}$. Bibl. 11 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_378_a6,
     author = {Yu. A. Neretin},
     title = {On the beta function of the tube of the light cone},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--80},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/}
}
                      
                      
                    Yu. A. Neretin. On the beta function of the tube of the light cone. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/