@article{ZNSL_2010_378_a6,
author = {Yu. A. Neretin},
title = {On the beta function of the tube of the light cone},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {73--80},
year = {2010},
volume = {378},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/}
}
Yu. A. Neretin. On the beta function of the tube of the light cone. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/
[1] F. A. Berezin, “The connection between covariant and contravariant symbols of operators on classical complex symmetric spaces”, Dokl. Akad. Nauk SSSR, 241:1 (1978), 15–17 | MR | Zbl
[2] E. Cartan, “Sur les domaines bornés homogènes de l'espace des $n$ variables complexes”, Abhandl. Hamburg, 11 (1935), 116–162 | DOI | Zbl
[3] Th. E. Cecil, Lie Sphere Geometry. With Applications to Submanifolds, Springer-Verlag, New York, 1992 | MR | Zbl
[4] S. G. Gindikin, “Analysis in homogeneous domains”, Uspekhi Mat. Nauk, 19:4(118) (1964), 3–92 | MR | Zbl
[5] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking, 1958 | MR
[6] J. Faraut, A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994 | MR | Zbl
[7] Yu. A. Neretin, “Matrix analogues of the beta function and Plancherel's formula for Berezin kernel representations”, Sb. Math., 191:5 (2000), 683–715 | DOI | MR | Zbl
[8] Yu. A. Neretin, “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189:2 (2002), 336–408 | DOI | MR | Zbl
[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Gordon Breach Science Publishers, New York, 1986 | MR | Zbl
[10] I. I. Pjateckiĭ-Šapiro, Geometry of Classical Domains and Theory of Automorphic Functions, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 | MR
[11] A. Unterberger, H. Upmeier, “The Berezin transform and invariant differential operators”, Comm. Math. Phys., 164 (1994), 563–597 | DOI | MR | Zbl