On the beta function of the tube of the light cone
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct the beta function of the Hermitian symmetric space $\mathrm O(n,2)/\mathrm O(n)\times\mathrm O(2)$, or, equivalently, of the tube $(\operatorname{Re}z_0)^2> (\operatorname{Re}z_1)^2+\dots+(\operatorname{Re}z_n)^2$ in $\mathbb C^{n+1}$. Bibl. 11 titles.
@article{ZNSL_2010_378_a6,
     author = {Yu. A. Neretin},
     title = {On the beta function of the tube of the light cone},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {73--80},
     year = {2010},
     volume = {378},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - On the beta function of the tube of the light cone
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 73
EP  - 80
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/
LA  - en
ID  - ZNSL_2010_378_a6
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T On the beta function of the tube of the light cone
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 73-80
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/
%G en
%F ZNSL_2010_378_a6
Yu. A. Neretin. On the beta function of the tube of the light cone. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 73-80. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a6/

[1] F. A. Berezin, “The connection between covariant and contravariant symbols of operators on classical complex symmetric spaces”, Dokl. Akad. Nauk SSSR, 241:1 (1978), 15–17 | MR | Zbl

[2] E. Cartan, “Sur les domaines bornés homogènes de l'espace des $n$ variables complexes”, Abhandl. Hamburg, 11 (1935), 116–162 | DOI | Zbl

[3] Th. E. Cecil, Lie Sphere Geometry. With Applications to Submanifolds, Springer-Verlag, New York, 1992 | MR | Zbl

[4] S. G. Gindikin, “Analysis in homogeneous domains”, Uspekhi Mat. Nauk, 19:4(118) (1964), 3–92 | MR | Zbl

[5] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical Domains, Science Press, Peking, 1958 | MR

[6] J. Faraut, A. Koranyi, Analysis on Symmetric Cones, Clarendon Press, Oxford, 1994 | MR | Zbl

[7] Yu. A. Neretin, “Matrix analogues of the beta function and Plancherel's formula for Berezin kernel representations”, Sb. Math., 191:5 (2000), 683–715 | DOI | MR | Zbl

[8] Yu. A. Neretin, “Plancherel formula for Berezin deformation of $L^2$ on Riemannian symmetric space”, J. Funct. Anal., 189:2 (2002), 336–408 | DOI | MR | Zbl

[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, v. 1, Elementary Functions, Gordon Breach Science Publishers, New York, 1986 | MR | Zbl

[10] I. I. Pjateckiĭ-Šapiro, Geometry of Classical Domains and Theory of Automorphic Functions, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1961 | MR

[11] A. Unterberger, H. Upmeier, “The Berezin transform and invariant differential operators”, Comm. Math. Phys., 164 (1994), 563–597 | DOI | MR | Zbl