Asymptotic behavior of the scaling entropy of the Pascal adic transformation
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 58-72

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we give an estimation for the growth of the scaling sequence of the Pascal adic transformation with respect to the $\sup$-metric. We construct a special class of $\alpha$-names of positive cumulative measure. The linear growth of its cardinality implies the logarithmic growth of the scaling sequence. Bibl. 14 titles.
@article{ZNSL_2010_378_a5,
     author = {A. A. Lodkin and I. E. Manaev and A. R. Minabutdinov},
     title = {Asymptotic behavior of the scaling entropy of the {Pascal} adic transformation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--72},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/}
}
TY  - JOUR
AU  - A. A. Lodkin
AU  - I. E. Manaev
AU  - A. R. Minabutdinov
TI  - Asymptotic behavior of the scaling entropy of the Pascal adic transformation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 58
EP  - 72
VL  - 378
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/
LA  - ru
ID  - ZNSL_2010_378_a5
ER  - 
%0 Journal Article
%A A. A. Lodkin
%A I. E. Manaev
%A A. R. Minabutdinov
%T Asymptotic behavior of the scaling entropy of the Pascal adic transformation
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 58-72
%V 378
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/
%G ru
%F ZNSL_2010_378_a5
A. A. Lodkin; I. E. Manaev; A. R. Minabutdinov. Asymptotic behavior of the scaling entropy of the Pascal adic transformation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 58-72. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/