Asymptotic behavior of the scaling entropy of the Pascal adic transformation
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 58-72
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we give an estimation for the growth of the scaling sequence of the Pascal adic transformation with respect to the $\sup$-metric. We construct a special class of $\alpha$-names of positive cumulative measure. The linear growth of its cardinality implies the logarithmic growth of the scaling sequence. Bibl. 14 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_378_a5,
     author = {A. A. Lodkin and I. E. Manaev and A. R. Minabutdinov},
     title = {Asymptotic behavior of the scaling entropy of the {Pascal} adic transformation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {58--72},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/}
}
                      
                      
                    TY - JOUR AU - A. A. Lodkin AU - I. E. Manaev AU - A. R. Minabutdinov TI - Asymptotic behavior of the scaling entropy of the Pascal adic transformation JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 58 EP - 72 VL - 378 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/ LA - ru ID - ZNSL_2010_378_a5 ER -
%0 Journal Article %A A. A. Lodkin %A I. E. Manaev %A A. R. Minabutdinov %T Asymptotic behavior of the scaling entropy of the Pascal adic transformation %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 58-72 %V 378 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/ %G ru %F ZNSL_2010_378_a5
A. A. Lodkin; I. E. Manaev; A. R. Minabutdinov. Asymptotic behavior of the scaling entropy of the Pascal adic transformation. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 58-72. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a5/