Decomposability of polymorphisms generated by an action of two finite groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 47-57
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we consider problems related to the decomposability of multivalued measure-preserving transformations (i.e., polymorphisms) generated by an action of two finite groups on a Lebesgue space. We give a general construction of such polymorphisms and prove a convenient decomposability criterion. In the case where both generating groups are of order 2, we use this criterion to further characterize the decomposability. In the last section, we present a method of constructing an approximative decomposition of polymorphisms that can be used for obtaining a decomposition in the usual sense. Bibl. 6 titles.
@article{ZNSL_2010_378_a4,
author = {A. M. Levin},
title = {Decomposability of polymorphisms generated by an action of two finite groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--57},
year = {2010},
volume = {378},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a4/}
}
A. M. Levin. Decomposability of polymorphisms generated by an action of two finite groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 47-57. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a4/
[1] A. M. Vershik, “Polymorphisms, Markov processes, quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl
[2] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie operatory”, Zap. nauchn. semin. LOMI, 72, 1977, 26–61 | MR | Zbl
[3] A. M. Vershik, “Kak vyglyadit tipichnyi markovskii operator?”, Algebra i analiz, 17:5 (2005), 91–104 | MR | Zbl
[4] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl
[5] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl
[6] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sb., 25(67):1 (1949), 107–150 | MR | Zbl