Decomposability of polymorphisms generated by an action of two finite groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this paper, we consider problems related to the decomposability of multivalued measure-preserving transformations (i.e., polymorphisms) generated by an action of two finite groups on a Lebesgue space. We give a general construction of such polymorphisms and prove a convenient decomposability criterion. In the case where both generating groups are of order 2, we use this criterion to further characterize the decomposability. In the last section, we present a method of constructing an approximative decomposition of polymorphisms that can be used for obtaining a decomposition in the usual sense. Bibl. 6 titles.
@article{ZNSL_2010_378_a4,
     author = {A. M. Levin},
     title = {Decomposability of polymorphisms generated by an action of two finite groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--57},
     year = {2010},
     volume = {378},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a4/}
}
TY  - JOUR
AU  - A. M. Levin
TI  - Decomposability of polymorphisms generated by an action of two finite groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 47
EP  - 57
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a4/
LA  - ru
ID  - ZNSL_2010_378_a4
ER  - 
%0 Journal Article
%A A. M. Levin
%T Decomposability of polymorphisms generated by an action of two finite groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 47-57
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a4/
%G ru
%F ZNSL_2010_378_a4
A. M. Levin. Decomposability of polymorphisms generated by an action of two finite groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 47-57. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a4/

[1] A. M. Vershik, “Polymorphisms, Markov processes, quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl

[2] A. M. Vershik, “Mnogoznachnye otobrazheniya s invariantnoi meroi (polimorfizmy) i markovskie operatory”, Zap. nauchn. semin. LOMI, 72, 1977, 26–61 | MR | Zbl

[3] A. M. Vershik, “Kak vyglyadit tipichnyi markovskii operator?”, Algebra i analiz, 17:5 (2005), 91–104 | MR | Zbl

[4] I. P. Kornfeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR | Zbl

[5] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[6] V. A. Rokhlin, “Ob osnovnykh ponyatiyakh teorii mery”, Mat. sb., 25(67):1 (1949), 107–150 | MR | Zbl