Canonical embeddings of compact metric spaces
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 40-46
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove that for any compact metric space having at least five points, two canonical (Hausdorff–Kuratowski and Kantorovich–Rubinshtein) embeddings do not coincide. Bibl. 3 titles.
@article{ZNSL_2010_378_a3,
author = {P. B. Zatitskiy},
title = {Canonical embeddings of compact metric spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--46},
year = {2010},
volume = {378},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a3/}
}
P. B. Zatitskiy. Canonical embeddings of compact metric spaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 40-46. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a3/
[1] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii”, Vestn. LGU, 13:7 (1958), 52–59 | MR | Zbl
[2] J. Melleray, F. V. Petrov, A. M. Vershik, “Linearly rigid metric spaces and the embedding problem”, Fund. Math., 199:2 (2008), 177–194 | DOI | MR | Zbl
[3] P. B. Zatitskii, “O sovpadenii kanonicheskikh vlozhenii metricheskikh prostranstv v banakhovy”, Zap. nauchn. semin. POMI, 360, 2008, 153–161 | Zbl