Canonical embeddings of compact metric spaces
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 40-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove that for any compact metric space having at least five points, two canonical (Hausdorff–Kuratowski and Kantorovich–Rubinshtein) embeddings do not coincide. Bibl. 3 titles.
@article{ZNSL_2010_378_a3,
     author = {P. B. Zatitskiy},
     title = {Canonical embeddings of compact metric spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--46},
     year = {2010},
     volume = {378},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a3/}
}
TY  - JOUR
AU  - P. B. Zatitskiy
TI  - Canonical embeddings of compact metric spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 40
EP  - 46
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a3/
LA  - ru
ID  - ZNSL_2010_378_a3
ER  - 
%0 Journal Article
%A P. B. Zatitskiy
%T Canonical embeddings of compact metric spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 40-46
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a3/
%G ru
%F ZNSL_2010_378_a3
P. B. Zatitskiy. Canonical embeddings of compact metric spaces. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 40-46. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a3/

[1] L. V. Kantorovich, G. Sh. Rubinshtein, “Ob odnom prostranstve vpolne additivnykh funktsii”, Vestn. LGU, 13:7 (1958), 52–59 | MR | Zbl

[2] J. Melleray, F. V. Petrov, A. M. Vershik, “Linearly rigid metric spaces and the embedding problem”, Fund. Math., 199:2 (2008), 177–194 | DOI | MR | Zbl

[3] P. B. Zatitskii, “O sovpadenii kanonicheskikh vlozhenii metricheskikh prostranstv v banakhovy”, Zap. nauchn. semin. POMI, 360, 2008, 153–161 | Zbl