Polynomiality of irreducible characters of the symmetric groups
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 32-39

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider Young diagrams differing only by the length of the first row (i.e., the form of diagrams below the first row is fixed). We prove that the values of the irreducible characters of the groups $\mathrm S_n$ corresponding to these diagrams are given by a polynomial of a special form with respect to natural parameters related to the cycle notation of permutations. Bibl. 3 titles.
@article{ZNSL_2010_378_a2,
     author = {E. E. Goryachko},
     title = {Polynomiality of irreducible characters of the symmetric groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--39},
     publisher = {mathdoc},
     volume = {378},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a2/}
}
TY  - JOUR
AU  - E. E. Goryachko
TI  - Polynomiality of irreducible characters of the symmetric groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 32
EP  - 39
VL  - 378
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a2/
LA  - ru
ID  - ZNSL_2010_378_a2
ER  - 
%0 Journal Article
%A E. E. Goryachko
%T Polynomiality of irreducible characters of the symmetric groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 32-39
%V 378
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a2/
%G ru
%F ZNSL_2010_378_a2
E. E. Goryachko. Polynomiality of irreducible characters of the symmetric groups. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 32-39. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a2/