@article{ZNSL_2010_378_a10,
author = {V. A. Shlyk},
title = {Decision problems for some classes of integer partitions and number multisets},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {171--183},
year = {2010},
volume = {378},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a10/}
}
V. A. Shlyk. Decision problems for some classes of integer partitions and number multisets. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 171-183. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a10/
[1] M. Geri, D. Dzhonson, Vychislitelnye mashiny i trudnoreshaemye zadachi, Mir, M., 1982 | MR
[2] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973
[3] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006
[4] V. A. Shlyk, “O vershinakh politopov razbienii chisel”, Doklady NAN Belarusi, 52:3 (2008), 5–10 | MR | Zbl
[5] V. A. Shlyk, “Kombinatornye operatsii porozhdeniya vershin politopa razbienii chisel”, Doklady NAN Belarusi, 53:6 (2009), 27–32 | MR | Zbl
[6] V. A. Shlyk, “Kriterii predstavleniya razbienii chisel v vide vypukloi kombinatsii dvukh razbienii”, Vestn. BGU. Ser. 1, 2009, no. 2, 109–114 | MR | Zbl
[7] G. Endryus, Teoriya razbienii, Nauka, M., 1982 | MR
[8] N. Bohr, F. Kalckar, “On the transmutation of atomic nuclei by impact of material particles: I. General theoretical remarks”, Kgl. Danske Vid. Selsk. Skr., 14 (1937), 1–40
[9] L. Debnath, “Srinivasa Ramanujan (1887–1920) and the theory of partitions of numbers and statistical mechanics. A centennial tribute”, Internat. J. Math. Math. Sci., 10:4 (1987), 625–640 | DOI | MR | Zbl
[10] R. Ehrenborg, M. A. Readdy, “The Möbius function of partitions with restricted block sizes”, Adv. Appl. Math., 39:3 (2007), 283–292 | DOI | MR | Zbl
[11] V. A. Shlyk, “Polytopes of partitions of numbers”, European J. Combin., 26:8 (2005), 1139–1153 | DOI | MR | Zbl
[12] V. A. Shlyk, Recursive operations for generating vertices of integer partition polytopes, Communication of the Joint Institute for Nuclear Research E5-2008-18, Dubna, 2008
[13] T. Tao, V. H. Vu, Additive Combinatorics, Cambridge Univ. Press, Cambridge, 2006 | MR