Indecomposable characters of the group of rational rearrangements of the segment
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present a description of all indecomposable characters of the group of rational rearrangements of the segment. We use the Vershik–Kerov approach consisting in the approximation of indecomposable characters of countable groups by indecomposable characters of finite groups. Bibl. 9 titles.
@article{ZNSL_2010_378_a1,
     author = {E. E. Goryachko and F. V. Petrov},
     title = {Indecomposable characters of the group of rational rearrangements of the segment},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {17--31},
     year = {2010},
     volume = {378},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/}
}
TY  - JOUR
AU  - E. E. Goryachko
AU  - F. V. Petrov
TI  - Indecomposable characters of the group of rational rearrangements of the segment
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 17
EP  - 31
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/
LA  - ru
ID  - ZNSL_2010_378_a1
ER  - 
%0 Journal Article
%A E. E. Goryachko
%A F. V. Petrov
%T Indecomposable characters of the group of rational rearrangements of the segment
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 17-31
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/
%G ru
%F ZNSL_2010_378_a1
E. E. Goryachko; F. V. Petrov. Indecomposable characters of the group of rational rearrangements of the segment. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 17-31. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/

[1] A. M. Vershik, “Opisanie invariantnykh mer dlya deistvii nekotorykh beskonechnomernykh grupp”, DAN SSSR, 218:4 (1974), 749–752 | Zbl

[2] A. M. Vershik, S. V. Kerov, “Asimptoticheskaya teoriya kharakterov simmetricheskoi gruppy”, Funkts. anal. i ego pril., 15:4 (1981), 15–27 | MR | Zbl

[3] A. M. Vershik, S. V. Kerov, “Lokalno poluprostye algebry. Kombinatornaya teoriya i $\mathrm K_0$-funktor”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 26, VINITI, M., 1985, 3–56 | MR | Zbl

[4] A. M. Vershik, A. Yu. Okunkov, “Novyi podkhod k teorii predstavlenii simmetricheskikh grupp. II”, Zap. nauchn. semin. POMI, 307, 2004, 57–98 | MR | Zbl

[5] E. E. Goryachko, “$\mathrm K_0$-funktor i kharaktery gruppy ratsionalnykh perekladyvanii otrezka”, Zap. nauchn. semin. POMI, 360, 2008, 124–138 | Zbl

[6] E. E. Goryachko, “Polinomialnost neprivodimykh kharakterov simmetricheskikh grupp”, Zap. nauchn. semin. POMI, 378, 2010, 32–39

[7] P. J. Cameron, S. Tarzi, “Limits of cubes”, Topology Appl., 155:14 (2008), 1454–1461 | DOI | MR | Zbl

[8] A. V. Dudko, Characters on the full group of the odometer, arXiv: 1005.4289v1

[9] N. V. Kroshko, V. I. Sushchansky, “Direct limits of symmetric and alternating groups with strictly diagonal embeddings”, Arch. Math. (Basel), 71:3 (1998), 173–182 | DOI | MR | Zbl