Indecomposable characters of the group of rational rearrangements of the segment
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 17-31
Voir la notice de l'article provenant de la source Math-Net.Ru
We present a description of all indecomposable characters of the group of rational rearrangements of the segment. We use the Vershik–Kerov approach consisting in the approximation of indecomposable characters of countable groups by indecomposable characters of finite groups. Bibl. 9 titles.
@article{ZNSL_2010_378_a1,
author = {E. E. Goryachko and F. V. Petrov},
title = {Indecomposable characters of the group of rational rearrangements of the segment},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {17--31},
publisher = {mathdoc},
volume = {378},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/}
}
TY - JOUR AU - E. E. Goryachko AU - F. V. Petrov TI - Indecomposable characters of the group of rational rearrangements of the segment JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 17 EP - 31 VL - 378 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/ LA - ru ID - ZNSL_2010_378_a1 ER -
E. E. Goryachko; F. V. Petrov. Indecomposable characters of the group of rational rearrangements of the segment. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 17-31. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a1/