Nonfree actions of countable groups and their characters
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 5-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We introduce a number of definitions of nonfree actions of groups. The most important of them is that of a totally nonfree action; it is naturally related to the theory of characters of groups and their factor representations. This short note is a brief exposition of a part of a more detailed paper on this subject, which is now in preparation. Bibl. 8 titles.
@article{ZNSL_2010_378_a0,
     author = {A. M. Vershik},
     title = {Nonfree actions of countable groups and their characters},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--16},
     year = {2010},
     volume = {378},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a0/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Nonfree actions of countable groups and their characters
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 16
VL  - 378
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a0/
LA  - ru
ID  - ZNSL_2010_378_a0
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Nonfree actions of countable groups and their characters
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-16
%V 378
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a0/
%G ru
%F ZNSL_2010_378_a0
A. M. Vershik. Nonfree actions of countable groups and their characters. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XVIII, Tome 378 (2010), pp. 5-16. http://geodesic.mathdoc.fr/item/ZNSL_2010_378_a0/

[1] A. Vershik, Non-free actions of countable groups and their representations, in preparation

[2] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin–New York, 1994 | MR | Zbl

[3] J. Dixmier, Les $C^*$-algèbres et leur representations, Gauthier-Villars, Paris, 1964 | MR | Zbl

[4] D. D'ngeli, A. Donno, M. Matter, T. Nagnibeda, “Schreier graphs of the Basilica group”, J. Modern Dynamics, 4:1 (2010), 167–205 | DOI | MR

[5] M. Takesaki, Theory of Operator Algebras, v. 3, Springer-Verlag, Berlin, 2003 | Zbl

[6] J. Renault, Groupoid Approach to $C^*$-Algebras, Lect. Notes in Math., 793, Springer-Verlag, Berlin–New York, 1980 | MR | Zbl

[7] A. M. Vershik, S. V. Kerov, “Kharaktery i faktor-predstavleniya beskonechnoi simmetricheskoi gruppy”, DAN SSSR, 257:5 (1981), 1037–1040 | MR | Zbl

[8] H. Dye, “On groups of measure preserving transformations. I”, Amer. J. Math., 81:1 (1959), 119–159 ; “II”, 85:4 (1963), 551–576 | DOI | MR | Zbl | DOI | MR | Zbl