@article{ZNSL_2010_377_a8,
author = {J. Zahid},
title = {Non-singular points on hypersurfaces over $\mathbb F_q$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {55--62},
year = {2010},
volume = {377},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/}
}
J. Zahid. Non-singular points on hypersurfaces over $\mathbb F_q$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 55-62. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/
[1] E. Artin, The collected papers of Emil Artin, Addison–Wesley, London, 1965 | MR | Zbl
[2] J. Ax, S. Koshen, “Diophantine problems over local fields. I”, Amer. J. Math., 87 (1965), 605–630 | DOI | MR
[3] A. Cafure, G. Matera, “Improved explicit estimates on the number of solutions of equations over afinite field”, Finite Fields Appl., 12:2 (2006), 155–185 | DOI | MR | Zbl
[4] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, second edition, Springer-Verlag, Berlin, 1998 | MR | Zbl
[5] E. Kaltofen, “Effective Noether irreducibility forms and applications”, J. Comput. System Sci., 50:2 (1995), 274–295 | DOI | MR | Zbl
[6] S. Lang, A. Weil, “Number of points of varieties in finite fields”, Amer. J. Math., 76 (1954), 819–827 | DOI | MR | Zbl
[7] D. B. Leep, C. C. Yeomans, “The number of points on a singular curve over a finite field”, Arch. Math. (Basel), 63:5 (1994), 420–426 | DOI | MR | Zbl
[8] D. J. Lewis, S. E. Schuur, “Varieties of small degree over finite fields”, J. reine angew. Math., 262/263 (1973), 293–306 | MR | Zbl
[9] W. M. Schmidt, Equations over finite fields, An elementary aproach, Lecture Notes Math., 536, Springer-Verlag, Berlin, 1976 | MR | Zbl
[10] G. Terjanian, “Un contre-exemple à une conjecture d'Artin”, C. R. Acad. Sci. Paris Sér. A–B, 262 (1966), A612 | MR | Zbl
[11] T. D. Wooley, “Artin's conjecture for septic and unidecic forms”, Acta Arith., 133:1 (2008), 25–35 | DOI | MR | Zbl