Non-singular points on hypersurfaces over $\mathbb F_q$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 55-62
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this survey article we investigate hypersurfaces defined over finite fields. More specifically we determine for which hypersurfaces one can ensure the existence of a non-singular point taking the cardinality of our ambient field large if need be. Additionally for such hypersurfaces we will find a lower bound on the cardinality for which a non-singular point is guaranteed. Bibl. 11 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_377_a8,
     author = {J. Zahid},
     title = {Non-singular points on hypersurfaces over $\mathbb F_q$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/}
}
                      
                      
                    J. Zahid. Non-singular points on hypersurfaces over $\mathbb F_q$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 55-62. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/