Non-singular points on hypersurfaces over $\mathbb F_q$
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 55-62 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this survey article we investigate hypersurfaces defined over finite fields. More specifically we determine for which hypersurfaces one can ensure the existence of a non-singular point taking the cardinality of our ambient field large if need be. Additionally for such hypersurfaces we will find a lower bound on the cardinality for which a non-singular point is guaranteed. Bibl. 11 titles.
@article{ZNSL_2010_377_a8,
     author = {J. Zahid},
     title = {Non-singular points on hypersurfaces over $\mathbb F_q$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {55--62},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/}
}
TY  - JOUR
AU  - J. Zahid
TI  - Non-singular points on hypersurfaces over $\mathbb F_q$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 55
EP  - 62
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/
LA  - en
ID  - ZNSL_2010_377_a8
ER  - 
%0 Journal Article
%A J. Zahid
%T Non-singular points on hypersurfaces over $\mathbb F_q$
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 55-62
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/
%G en
%F ZNSL_2010_377_a8
J. Zahid. Non-singular points on hypersurfaces over $\mathbb F_q$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 55-62. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a8/

[1] E. Artin, The collected papers of Emil Artin, Addison–Wesley, London, 1965 | MR | Zbl

[2] J. Ax, S. Koshen, “Diophantine problems over local fields. I”, Amer. J. Math., 87 (1965), 605–630 | DOI | MR

[3] A. Cafure, G. Matera, “Improved explicit estimates on the number of solutions of equations over afinite field”, Finite Fields Appl., 12:2 (2006), 155–185 | DOI | MR | Zbl

[4] W. Fulton, Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2, second edition, Springer-Verlag, Berlin, 1998 | MR | Zbl

[5] E. Kaltofen, “Effective Noether irreducibility forms and applications”, J. Comput. System Sci., 50:2 (1995), 274–295 | DOI | MR | Zbl

[6] S. Lang, A. Weil, “Number of points of varieties in finite fields”, Amer. J. Math., 76 (1954), 819–827 | DOI | MR | Zbl

[7] D. B. Leep, C. C. Yeomans, “The number of points on a singular curve over a finite field”, Arch. Math. (Basel), 63:5 (1994), 420–426 | DOI | MR | Zbl

[8] D. J. Lewis, S. E. Schuur, “Varieties of small degree over finite fields”, J. reine angew. Math., 262/263 (1973), 293–306 | MR | Zbl

[9] W. M. Schmidt, Equations over finite fields, An elementary aproach, Lecture Notes Math., 536, Springer-Verlag, Berlin, 1976 | MR | Zbl

[10] G. Terjanian, “Un contre-exemple à une conjecture d'Artin”, C. R. Acad. Sci. Paris Sér. A–B, 262 (1966), A612 | MR | Zbl

[11] T. D. Wooley, “Artin's conjecture for septic and unidecic forms”, Acta Arith., 133:1 (2008), 25–35 | DOI | MR | Zbl