@article{ZNSL_2010_377_a7,
author = {M. Davis},
title = {Representation theorems for r.e. sets and a~conjecture related to {Poonen's} larges subring of~$\mathbb Q$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {50--54},
year = {2010},
volume = {377},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a7/}
}
M. Davis. Representation theorems for r.e. sets and a conjecture related to Poonen's larges subring of $\mathbb Q$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 50-54. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a7/
[1] W. Boone, “The Word Problem”, Ann. Math., 70 (1959), 207–265 | DOI | MR | Zbl
[2] G. Higman, “Subgroups of finitely presented groups”, Proc. Royal Soc. London Series A, 262 (1961), 455–475 | DOI | MR | Zbl
[3] Hilbert's Tenth Problem, MIT Press, Cambridge, Massachusetts, 1993 | MR | Zbl | Zbl
[4] Le dixième problème de Hilbert, Masson, 1995 | MR | Zbl | Zbl
[5] “On the algorithmic insolvability of the word problem in group theory”, American Mathematical Society Translations Ser. 2, 91 (1958), 1–122 | MR | MR | Zbl
[6] B. Poonen, “Hilbert's tenth problem and Mazur's conjecture for large subrings of $\mathbb Q$”, J. Amer. Math. Soc., 16:4 (2003), 981–990 | DOI | MR | Zbl
[7] E. L. Post, “Recursively enumerable sets of positive integers and their decision problems”, Bull. Amer. Math. Soc., 50 (1944), 284–316 ; Reprinted: Martin Davis (ed.), The Undecidable, Raven Press, 1965, and Dover, 2004, 305–337 ; Reprinted: Martin Davis (ed.), Solvability, Provability, Definability, The Collected Works of Emil L. Post, Birkhäuser, 1994, 461–493 | DOI | MR | Zbl | MR | MR
[8] J. Rotman, An Introduction to the Theory of Groups, Springer-Verlag, Berlin–New York, 1994 | MR | Zbl