Representation theorems for r.e. sets and a~conjecture related to Poonen's larges subring of~$\mathbb Q$
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 50-54
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is remarked that unsolvability results can often be extended to yield novel “representation” theorems for the set of all recursively enumerable sets. In particular it is shown that analysis of the proof of the unsolvability of Hilbert's 10th Problem over Poonen's large subring of $\mathbb Q$ can provide such a theorem. Moreover, applying that theorem to the case of a simple set leads to a conjecture whose truth would imply the unsolvability of Hilbert's 10th Problem over $\mathbb Q$. Bibl. 7 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_377_a7,
     author = {M. Davis},
     title = {Representation theorems for r.e. sets and a~conjecture related to {Poonen's} larges subring of~$\mathbb Q$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {50--54},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a7/}
}
                      
                      
                    TY - JOUR AU - M. Davis TI - Representation theorems for r.e. sets and a~conjecture related to Poonen's larges subring of~$\mathbb Q$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 50 EP - 54 VL - 377 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a7/ LA - en ID - ZNSL_2010_377_a7 ER -
M. Davis. Representation theorems for r.e. sets and a~conjecture related to Poonen's larges subring of~$\mathbb Q$. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 50-54. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a7/