On the modularity of rigid Calabi–Yau threefolds: epilogue
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 44-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In a recent paper of F. Gouvea and N. Yui a detailed account is given of a patching argument due to Serre that proves that the modularity of all rigid Calabi–Yau threefolds defined over $\mathbb Q$ follows from Serre's modularity conjecture (now a theorem). In this note we give an alternative proof of this implication. The main difference with Serre's argument is that instead of using as main input residual modularity in infinitely many characteristics we just require residual modularity in a suitable characteristic. This is combined with effective Chebotarev. Bibl. 12 titles.
@article{ZNSL_2010_377_a6,
     author = {Luis Dieulefait},
     title = {On the modularity of rigid {Calabi{\textendash}Yau} threefolds: epilogue},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {44--49},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a6/}
}
TY  - JOUR
AU  - Luis Dieulefait
TI  - On the modularity of rigid Calabi–Yau threefolds: epilogue
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 44
EP  - 49
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a6/
LA  - en
ID  - ZNSL_2010_377_a6
ER  - 
%0 Journal Article
%A Luis Dieulefait
%T On the modularity of rigid Calabi–Yau threefolds: epilogue
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 44-49
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a6/
%G en
%F ZNSL_2010_377_a6
Luis Dieulefait. On the modularity of rigid Calabi–Yau threefolds: epilogue. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 44-49. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a6/

[1] F. Diamond, M. Flach, L. Guo, “The Tamagawa number conjecture of adjoint motives of modular forms”, Ann. Sci. Ec. Norm. Sup., 37 (2004), 663–727 | MR | Zbl

[2] L. V. Dieulefait, Remarks on Serre's modularity conjecture, preprint, 2006 | MR

[3] L. V. Dieulefait, J. Manoharmayum, “Modularity of rigid Calabi–Yau threefolds over $\mathbb Q$”, Calabi–Yau Varieties and Mirror Symmetry, Fields Institute Communications Series, 38, AMS, 2003, 159–166 | MR | Zbl

[4] F. Gouvea, N. Yui, Rigid Calabi–Yau threefolds over $\mathbb Q$ are modular: a Footnote to Serre, preprint, 2009 | Zbl

[5] K. Hulek, R. Kloosterman, M. Schuett, “Modularity of Calabi–Yau varieties”, Global Aspects of Complex Geometry, eds. F. Catanese, H. Esnault, A. Huckleberry, K. Hulek, T. Peternell, Springer-Verlag, 2006, 271–309 | DOI | MR | Zbl

[6] C. Khare, J.-P. Wintenberger, “Serre's modularity conjecture (1)”, Inventiones Mathematicae, 178 (2009), 485–504 | DOI | MR | Zbl

[7] C. Khare, J.-P. Wintenberger, “Serre's modularity conjecture (2)”, Inventiones Mathematicae, 178 (2009), 505–586 | DOI | MR | Zbl

[8] M. Kisin, “Modularity of 2-adic Barsotti-Tate representations”, Inventiones Mathematicae, 178 (2009), 587–634 | DOI | MR | Zbl

[9] K. Ribet, “On $l$-adic representations attached to modular forms. II”, Glasgow Math. J., 27 (1985), 185–194 | DOI | MR | Zbl

[10] J.-P. Serre, “Quelques applications du théorème de densité de Chebotarev”, Oeuvres, v. III, Springer-Verlag, 1986, 563–641 | Zbl

[12] J.-P. Serre, “Sur les représentations modulaires de degré 2 de $\mathrm{Gal}(\overline{\mathbb Q}/\mathbb Q)$”, Duke Math. J., 54 (1987), 179–230 | DOI | MR | Zbl

[13] R. Taylor, “On the meromorphic continuation of degree two $L$-functions”, Documenta Mathematica, 2006, Extra Volume: John Coates' Sixtieth Birthday, 729–779 | MR