Singular del Pezzo surfaces that are equivariant compactifications
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 26-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We determine which singular del Pezzo surfaces are equivariant compactifications of $\mathbb G_\mathrm a^2$, to assist with proofs of Manin's conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of $\mathbb G_\mathrm a\rtimes\mathbb G_\mathrm m$. Bibl. 32 titles.
@article{ZNSL_2010_377_a5,
     author = {U. Derenthal and D. Loughran},
     title = {Singular del {Pezzo} surfaces that are equivariant compactifications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--43},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/}
}
TY  - JOUR
AU  - U. Derenthal
AU  - D. Loughran
TI  - Singular del Pezzo surfaces that are equivariant compactifications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 26
EP  - 43
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/
LA  - en
ID  - ZNSL_2010_377_a5
ER  - 
%0 Journal Article
%A U. Derenthal
%A D. Loughran
%T Singular del Pezzo surfaces that are equivariant compactifications
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 26-43
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/
%G en
%F ZNSL_2010_377_a5
U. Derenthal; D. Loughran. Singular del Pezzo surfaces that are equivariant compactifications. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 26-43. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/

[1] V. Alexeev, V. V. Nikulin, Del Pezzo and $K3$ surfaces, Mathematical Society of Japan Memoirs, 15, 2006 | MR | Zbl

[2] R. de la Bretèche, T. D. Browning, “On Manin's conjecture for singular del Pezzo surfaces of degree 4. I”, Michigan Math. J., 55:1 (2007), 51–80 | DOI | MR | Zbl

[3] R. de la Bretèche, T. D. Browning, Manin's conjecture for quartic del Pezzo surfaces with a conic fibration, With an appendix by U. Derenthal, 2008, arXiv: 0808.1616

[4] R. de la Bretèche, T. D. Browning, U. Derenthal, “On Manin's conjecture for a certain singular cubic surface”, Ann. Sci. École Norm. Sup. (4), 40:1 (2007), 1–50 | MR | Zbl

[5] R. de la Bretéche, T. D. Browning, E. Peyre, On Manin's conjecture for a family of Châtelet surface, 2010, arXiv: 1002.0255

[6] T. D. Browning, U. Derenthal, “Manin's conjecture for a cubic surface with $D_5$ singularity”, Int. Math. Res. Notes, 14 (2009), 2620–2647 | MR | Zbl

[7] T. D. Browning, U. Derenthal, “Manin's conjecture for a quartic del Pezzo surface with $A_4$ singularity”, Ann. Inst. Fourier (Grenoble), 59:3 (2009), 1231–1265 | DOI | MR | Zbl

[8] R. de la Bretéche, É. Fouvry, “L'éclaté du plan projectif en quatre points dont deux conjugués”, J. reine angew. Math., 576 (2004), 63–122 | DOI | MR | Zbl

[9] P. Le Boudec, Manin's conjecture for two quartic del Pezzo surfaces with $3A_1$ and $A_1+A_2$ singularity types, 2010, arXiv: 1006.0691 | Zbl

[10] R. de la Bretéche, “Sur le nombre de points de hauteur bornée d'une certaine surface cubique singulière”, Astésque, 251 (1998), 51–77 | MR | Zbl

[11] R. de la Bretèche, “Nombre de points de hauteur bornée sur les surfaces de del Pezzo de degré 5”, Duke Math. J., 113:2 (2002), 421–464 | DOI | MR | Zbl

[12] V. V. Batyrev, Yu. Tschinkel, “Manin's conjecture for toric varieties”, J. Algebraic Geom., 7:1 (1998), 15–53 | MR | Zbl

[13] J. W. Bruce, C. T. C. Wall, “On the classification of cubic surfaces”, J. London Math. Soc. (2), 19:2 (1979), 245–256 | DOI | MR | Zbl

[14] A. Chambert-Loir, Yu. Tschinkel, “On the distribution of points of bounded height on equivariant compatifications of vector groups”, Invent. Math., 148:2 (2002), 421–452 | DOI | MR | Zbl

[15] D. F. Coray, M. A. Tsfasman, “Arithmetic on singular Del Pezzo surfaces”, Proc. London Math. Soc. (3), 57:1 (1988), 25–87 | DOI | MR | Zbl

[16] U. Derenthal, forthcoming

[17] U. Derenthal, Singular del Pezzo surfaces whose universal torsors are hypersurfaces, 2006, arXiv: math/0604194[math.AG]

[18] U. Derenthal, Manin's conjecture for a quintic del Pezzo surface with $\mathbf A_2$ singularity, 2007, arXiv: 0710.1583

[19] U. Derenthal, “Counting integral points on universal torsors”, Int. Math. Res. Notes, 14 (2009), 2648–2699 | MR | Zbl

[20] U. Derenthal, M. Joyce, Z. Teitler, “The nef cone volume of generalized del Pezzo surfaces”, Algebra Number Theory, 2:2 (2008), 157–182 | DOI | MR | Zbl

[21] M. Demazure, H. C. Pinkham (eds), Séminaire sur les Singularités des Surfaces, Lect. Notes Math., 777, 1980 | DOI | MR

[22] U. Derenthal, Yu. Tshinkel, “Universal torsors over del Pezzo surfaces and rational points”, Equidistribution in Number Theory, an Introductio, NATO Sci. Ser. II Math. Phys. Chem., 237, Springer, Dordrecht, 2007, 169–196 | MR | Zbl

[23] J. Franke, Yu. I. Manin, Yu. Tschinkel, “Rational points of bounded height on Fano varieties”, Invent. Math., 95:2 (1989), 421–435 | DOI | MR | Zbl

[24] É. Fouvry, “Sur la hauteur des points d'une certaine surface cubique singulière”, Astérisque, 251 (1998), 31–49 | MR | Zbl

[25] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York, 1977 | DOI | MR | Zbl

[26] D. R. Heath-Brown, B. Z. Moroz, “The density of rational points on the cubic surface $X^3_0=X_1X_2X_3$”, Math. Proc. Cambridge Philos. Soc., 125:3 (1999), 385–395 | DOI | MR | Zbl

[27] B. Hassett, Yu. Tschinkel, “Geometry of equivariant compactifications of $\mathbf G^n_a$”, Internat. Math. Res. Notices, 22 (1999), 1211–1230 | DOI | MR | Zbl

[28] B. Hassett, Yu. Tschinkel, “Universal torsors and Cox rings”, Arithmetic of Higher-Dimensional Algebraic Varieties (Palo Alto, CA, 2002), Progr. Math., 226, Birkhäuser Boston, 2004, 149–173 | MR | Zbl

[29] D. T. Loughran, “Manin's conjecture for a singular sextic del Pezzo surface”, J. Théor. Nombres Bordeaux (to appear)

[30] Y. Sakamaki, “Automorphism groups on normal singular cubic surfaces with no parameters”, Trans. Amer. Math. Soc., 362:5 (2010), 2641–2666 | DOI | MR | Zbl

[31] P. Salberger, “Tamagawa measures on universal torsors and points of bounded height on Fano varieties”, Astérisque, 251 (1998), 91–258 | MR | Zbl

[32] Q. Ye, “On Gorenstein log del Pezzo surfaces”, Japan. J. Math. (N.S.), 28:1 (2002), 87–136 | MR | Zbl