Singular del Pezzo surfaces that are equivariant compactifications
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 26-43

Voir la notice de l'article provenant de la source Math-Net.Ru

We determine which singular del Pezzo surfaces are equivariant compactifications of $\mathbb G_\mathrm a^2$, to assist with proofs of Manin's conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of $\mathbb G_\mathrm a\rtimes\mathbb G_\mathrm m$. Bibl. 32 titles.
@article{ZNSL_2010_377_a5,
     author = {U. Derenthal and D. Loughran},
     title = {Singular del {Pezzo} surfaces that are equivariant compactifications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--43},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/}
}
TY  - JOUR
AU  - U. Derenthal
AU  - D. Loughran
TI  - Singular del Pezzo surfaces that are equivariant compactifications
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 26
EP  - 43
VL  - 377
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/
LA  - en
ID  - ZNSL_2010_377_a5
ER  - 
%0 Journal Article
%A U. Derenthal
%A D. Loughran
%T Singular del Pezzo surfaces that are equivariant compactifications
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 26-43
%V 377
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/
%G en
%F ZNSL_2010_377_a5
U. Derenthal; D. Loughran. Singular del Pezzo surfaces that are equivariant compactifications. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 26-43. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/