Singular del Pezzo surfaces that are equivariant compactifications
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 26-43
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We determine which singular del Pezzo surfaces are equivariant compactifications of $\mathbb G_\mathrm a^2$, to assist with proofs of Manin's conjecture for such surfaces. Additionally, we give an example of a singular quartic del Pezzo surface that is an equivariant compactification of $\mathbb G_\mathrm a\rtimes\mathbb G_\mathrm m$. Bibl. 32 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_377_a5,
     author = {U. Derenthal and D. Loughran},
     title = {Singular del {Pezzo} surfaces that are equivariant compactifications},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {26--43},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/}
}
                      
                      
                    U. Derenthal; D. Loughran. Singular del Pezzo surfaces that are equivariant compactifications. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 26-43. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a5/