On the quantitative subspace theorem
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 217-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this survey, we give an overview of recent improvements upon the Quantitative Subspace Theorem, obtained jointly with R. Ferretti, which follow from work in [9]. Further, we give a new gap principle with which we can estimate the number of subspaces containing the “small solutions” of the systems of inequalities under consideration. As an introduction, we start with a quantitative version of Roth's theorem. Bibl. 28 titles.
@article{ZNSL_2010_377_a16,
     author = {J.-H. Evertse},
     title = {On the quantitative subspace theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {217--240},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/}
}
TY  - JOUR
AU  - J.-H. Evertse
TI  - On the quantitative subspace theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 217
EP  - 240
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/
LA  - en
ID  - ZNSL_2010_377_a16
ER  - 
%0 Journal Article
%A J.-H. Evertse
%T On the quantitative subspace theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 217-240
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/
%G en
%F ZNSL_2010_377_a16
J.-H. Evertse. On the quantitative subspace theorem. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 217-240. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/

[1] E. Bombieri, A. J. van der Poorten, “Some quantitative results related to Roth's Theorem”, J. Austral. Math. Soc. Ser. A, 45 (1988), 233–248 | DOI | MR | Zbl

[2] Y. Bugeaud, J.-H. Evertse, “On two notions of complexity of algebraic numbers”, Acta Arith., 133 (2008), 221–250 | DOI | MR | Zbl

[3] H. Davenport, K. F. Roth, “Rational approximations to algebraic numbers”, Mathematika, 2 (1955), 160–167 | DOI | MR | Zbl

[4] J.-H. Evertse, “The Subspace Theorem of W. M. Schmidt”, Diophantine Approximation and Abelian Varieties, Introductory lectures, Lect. Notes Math., 1566, eds. B. Edixhoven, J.-H. Evertse, Springer Verlag, 1993, Chap. IV, 31–50 | MR

[5] J.-H. Evertse, “An explicit version of Faltings' Product theorem and an improvement of Roth's lemma”, Acta Arith., 73 (1995), 215–248 | MR | Zbl

[6] J.-H. Evertse, “An improvement of the quantitative Subspace theorem”, Compositio Math., 101 (1996), 225–311 | MR | Zbl

[7] J.-H. Evertse, “The number of algebraic numbers of given degree approximating a given algebraic number”, Analytic Number Theory, Proc. Conf. Kyoto, 1996, ed. Y. Motohashi, Cambridge Univ. Press, 1997, 53–83 | DOI | MR | Zbl

[8] J.-H. Evertse, “On the norm form inequality $|F(\mathbf x)|\leq h$”, Publ. Math. Debrecen, 56 (2000), 337–374 | MR | Zbl

[9] J.-H. Evertse, R. G. Ferretti, A further improvement of the quantitative subspace theorem, Preprint, available from the first author

[10] J.-H. Evertse, N. Hirata-Kohno, “Wirsing systems and resultant inequalities”, Number Theory for the Millennium, v. I, eds. M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand, W. Philip, A. K. Peter, Natick, Mass., 2002, 449–461 | MR | Zbl

[11] J.-H. Evertse, H. P. Schlickewei, “The absolute subspace theorem and linear equations with unknowns from a multiplicative group”, Number Theory in Progress, v. I, eds. K. Győry, H. Iwaniec, J. Urbanowicz, Walter de Gruyter, Berlin–New York, 1999, 121–142 | MR

[12] J.-H. Evertse, H. P. Schlickewei, “A quantitative version of the absolute subspace theorem”, J. reine angew. Math., 548 (2002), 21–127 | DOI | MR | Zbl

[13] J.-H. Evertse, H. P. Schlickewei, W. M. Schmidt, “Linear equations in variables which lie in a multiplicative group”, Ann. Math., 155 (2002), 807–836 | DOI | MR | Zbl

[14] G. Faltings, “Diophantine approximation on Abelian varieties”, Ann. Math., 133 (1991), 549–576 | DOI | MR | Zbl

[15] G. Faltings, G. Wüstholz, “Diophantine approximations on projective spaces”, Invent. Math., 116 (1994), 109–138 | DOI | MR | Zbl

[16] M. Mignotte, “Quelques remarques sur l'approximation rationnelle des nombres algébriques”, J. reine angew. Math., 268/269 (1974), 341–347 | DOI | MR | Zbl

[17] K. F. Roth, “Rational approximations to algebraic numbers”, Mathematika, 2 (1955), 1–20 ; “Corrigendum”, 168 | DOI | MR | Zbl

[18] H. P. Schlickewei, “The $\mathfrak p$-adic Thue–Siegel–Roth–Schmidt theorem”, Arch. Math. (Basel), 29 (1977), 267–270 | DOI | MR | Zbl

[19] H. P. Schlickewei, “The quantitative subspace theorem for number fields”, Compositio Math., 82 (1992), 245–273 | MR | Zbl

[20] H. P. Schlickewei, “Multiplicities of recurrence sequences”, Acta Math., 176 (1996), 171–242 | DOI | MR

[21] W. M. Schmidt, “Norm form equations”, Ann. Math., 96 (1972), 526–551 | DOI | MR | Zbl

[22] W. M. Schmidt, Diophantine approximation, Lect. Notes Math., 785, Springer Verlag, 1980 | MR | Zbl

[23] W. M. Schmidt, “The subspace theorem in Diophantine approximations”, Compos. Math., 69 (1989), 121–173 | MR | Zbl

[24] W. M. Schmidt, “The number of rational approximations by algebraic numbers and the number of solutions of norm form equations”, Number theory and related topics, Proc. Conf. (Bombay, 1988), Tata Inst. Fund. Res. Stud. Math., 12, Tata Inst. Fund. Res., Bombay, 1989, 195–202 | MR | Zbl

[25] W. M. Schmidt, “Vojta's refinement of the subspace theorem”, Trans. Amer. Math. Soc., 340 (1993), 705–731 | DOI | MR | Zbl

[26] W. M. Schmidt, “The zero multiplicity of linear recurrence sequences”, Acta Math., 182 (1999), 243–282 | DOI | MR | Zbl

[27] W. M. Schmidt, “Counting Diophantine approximations of small height”, J. Ramanujan Math. Soc., 24 (2009), 171–190 | MR | Zbl

[28] P. Vojta, “A refinement of Schmidt's subspace theorem”, Amer. J. Math., 111 (1989), 489–518 | DOI | MR | Zbl