On the quantitative subspace theorem
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 217-240

Voir la notice de l'article provenant de la source Math-Net.Ru

In this survey, we give an overview of recent improvements upon the Quantitative Subspace Theorem, obtained jointly with R. Ferretti, which follow from work in [9]. Further, we give a new gap principle with which we can estimate the number of subspaces containing the “small solutions” of the systems of inequalities under consideration. As an introduction, we start with a quantitative version of Roth's theorem. Bibl. 28 titles.
@article{ZNSL_2010_377_a16,
     author = {J.-H. Evertse},
     title = {On the quantitative subspace theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {217--240},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/}
}
TY  - JOUR
AU  - J.-H. Evertse
TI  - On the quantitative subspace theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 217
EP  - 240
VL  - 377
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/
LA  - en
ID  - ZNSL_2010_377_a16
ER  - 
%0 Journal Article
%A J.-H. Evertse
%T On the quantitative subspace theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 217-240
%V 377
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/
%G en
%F ZNSL_2010_377_a16
J.-H. Evertse. On the quantitative subspace theorem. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 217-240. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/