On the quantitative subspace theorem
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 217-240
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this survey, we give an overview of recent improvements upon the Quantitative Subspace Theorem, obtained jointly with R. Ferretti, which follow from work in [9]. Further, we give a new gap principle with which we can estimate the number of subspaces containing the “small solutions” of the systems of inequalities under consideration. As an introduction, we start with a quantitative version of Roth's theorem. Bibl. 28 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_377_a16,
     author = {J.-H. Evertse},
     title = {On the quantitative subspace theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {217--240},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/}
}
                      
                      
                    J.-H. Evertse. On the quantitative subspace theorem. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 217-240. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a16/