Bounds for the cubic Weyl sum
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 199-216
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Subject to the $abc$-conjecture, we improve the standard Weyl estimate for cubic exponential sums in which the argument is a quadratic irrational. Specifically we show that 
$$
\sum_{n\le N}e(\alpha n^3)\ll_{\varepsilon,\alpha}N^{\frac57+\varepsilon}
$$
for any $\varepsilon>0$ and any quadratic irrational $\alpha\in\mathbb R-\mathbb Q$. Classically one would have had the (unconditional) exponent $\frac34+\varepsilon$ for such $\alpha$. Bibl. 5 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_377_a15,
     author = {D. R. Heath-Brown},
     title = {Bounds for the cubic {Weyl} sum},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--216},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a15/}
}
                      
                      
                    D. R. Heath-Brown. Bounds for the cubic Weyl sum. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 199-216. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a15/