Base change for Hilbert eigenvarieties of unitary groups
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 148-198

Voir la notice de l'article provenant de la source Math-Net.Ru

The construction of eigenvarieties by Chenevier is extended to the Hilbert case, that is to unitary groups over a totally real field $F$ which are anisotropic at each archimedean place. This permits us to ask about the relationship of the eigenvarieties which we construct for two totally real fields, one being a cyclic extension of the other. Bibl. 23 titles.
@article{ZNSL_2010_377_a14,
     author = {Yu. Z. Flicker},
     title = {Base change for {Hilbert} eigenvarieties of unitary groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--198},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/}
}
TY  - JOUR
AU  - Yu. Z. Flicker
TI  - Base change for Hilbert eigenvarieties of unitary groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 148
EP  - 198
VL  - 377
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/
LA  - en
ID  - ZNSL_2010_377_a14
ER  - 
%0 Journal Article
%A Yu. Z. Flicker
%T Base change for Hilbert eigenvarieties of unitary groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 148-198
%V 377
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/
%G en
%F ZNSL_2010_377_a14
Yu. Z. Flicker. Base change for Hilbert eigenvarieties of unitary groups. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 148-198. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/