Base change for Hilbert eigenvarieties of unitary groups
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 148-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The construction of eigenvarieties by Chenevier is extended to the Hilbert case, that is to unitary groups over a totally real field $F$ which are anisotropic at each archimedean place. This permits us to ask about the relationship of the eigenvarieties which we construct for two totally real fields, one being a cyclic extension of the other. Bibl. 23 titles.
@article{ZNSL_2010_377_a14,
     author = {Yu. Z. Flicker},
     title = {Base change for {Hilbert} eigenvarieties of unitary groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {148--198},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/}
}
TY  - JOUR
AU  - Yu. Z. Flicker
TI  - Base change for Hilbert eigenvarieties of unitary groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 148
EP  - 198
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/
LA  - en
ID  - ZNSL_2010_377_a14
ER  - 
%0 Journal Article
%A Yu. Z. Flicker
%T Base change for Hilbert eigenvarieties of unitary groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 148-198
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/
%G en
%F ZNSL_2010_377_a14
Yu. Z. Flicker. Base change for Hilbert eigenvarieties of unitary groups. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 148-198. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a14/

[1] I. Bernstein, A. Zelevinsky, “Induced representations of reductive $p$-adic groups. I”, Ann. Sci. Ec. Norm. Super., 10 (1977), 441–472 | MR | Zbl

[2] S. Bosch, U. Güntzer, R. Remmert, Non-Archimedean Analysis, Springer-Verlag, 1984 | MR | Zbl

[3] K. Buzzard, “Eigenvarieties, $L$-functions and Galois representations”, Lect. Notes, 320, Camb. Univ. Press, 2007, 59–120 | MR | Zbl

[4] P.-S. Chan, Y. Flicker, “Cyclic odd degree base change lifting for unitary groups in three variables”, Intern. J. Number Theory, 5 (2009), 1247–1309 | DOI | MR | Zbl

[5] G. Chenevier, “Familles $p$-adiques de formes automorphes pour $\mathrm{GL}_n$”, J. Reine Angew. Math., 570 (2004), 143–217 | DOI | MR | Zbl

[6] G. Chenevier, “Une correspondance de Jacquet–Langlands $p$-adique”, Duke Math. J., 126 (2005), 161–194 | DOI | MR | Zbl

[7] R. Coleman, “Classical and overconvergent modular forms”, Invent. Math., 124 (1996), 215–241 | DOI | MR | Zbl

[8] R. Coleman, “$p$-adic Banach spaces and families of modular forms”, Invent. Math., 127 (1997), 417–479 | DOI | MR | Zbl

[9] R. Coleman, B. Mazur, “The eigencurve”, Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lect. Note Ser., 254, Cambridge Univ. Press, Cambridge, 1998, 1–113 | MR | Zbl

[10] P. Deligne, J.-P. Serre, “Formes modulaires de poids 1”, Ann. sci. École Normale Sup. Sér. 4, 7 (1974), 507–530 | MR | Zbl

[11] M. Emerton, “On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms”, Invent. Math., 164 (2006), 1–84 | DOI | MR | Zbl

[12] J. Fresnel, M. van der Put, Rigid Analytic Geometry and Its Applications, Birkhäuser, 2004 | MR | Zbl

[13] Y. Flicker, Automorphic representations of low rank groups, World Scientific, June 2006 | MR | Zbl

[14] Y. Flicker, The tame algebra, Preprint

[15] Y. Flicker, D. Kazhdan, “Metaplectic correspondence”, Publ. Math. IHES, 64 (1987), 53–110 | DOI | MR

[16] R. Goodman, N. Wallach, Representations and invariants of classical groups, Encyclop. Math., 68, Cambridge Univ. Press, 1998 | MR | Zbl

[17] T. Haines, R. Kottwitz, A. Prasad, Iwahori–Hecke algebras, 2009, arXiv: 0309168 | MR

[18] H. Hida, Elementary theory of $L$-functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, Cambridge, 1993 | MR | Zbl

[19] N. Katz, “$p$-adic properties of modular schemes and modular forms. Modular functions of one variable. III”, Proc. Internat. Summer School (Univ. Antwerp, Antwerp, 1972), Lect. Notes Math., 350, Springer, Berlin, 1973, 69–190 | DOI | MR

[20] D. Loeffler, Overconvergent algebraic automorphic forms, arXiv: 0901.2279

[21] J.-P. Serre, “Endomorphismes complètement continus des espaces de Banach $p$-adiques”, Publ. Math. IHES, 12 (1962), 69–85 | DOI | MR | Zbl

[22] Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York, 1979 | DOI | MR | MR | Zbl | Zbl

[23] A. Yamagami, “On $p$-adic families of Hilbert cusp forms of finite slope”, J. Number Theory, 123 (2007), 363–387 | DOI | MR | Zbl