Curves over every global field violating the local-global principle
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 141-147

Voir la notice de l'article provenant de la source Math-Net.Ru

There is an algorithm that takes as input a global field $k$ and produces a curve over $k$ violating the local-global principle. Also, given a global field $k$ and a nonnegative integer $n$, one can effectively construct a curve $X$ over $k$ such that $\#X(k)=n$. Bibl. 26 titles.
@article{ZNSL_2010_377_a13,
     author = {B. Poonen},
     title = {Curves over every global field violating the local-global principle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--147},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/}
}
TY  - JOUR
AU  - B. Poonen
TI  - Curves over every global field violating the local-global principle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 141
EP  - 147
VL  - 377
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/
LA  - en
ID  - ZNSL_2010_377_a13
ER  - 
%0 Journal Article
%A B. Poonen
%T Curves over every global field violating the local-global principle
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 141-147
%V 377
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/
%G en
%F ZNSL_2010_377_a13
B. Poonen. Curves over every global field violating the local-global principle. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 141-147. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/