Curves over every global field violating the local-global principle
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 141-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

There is an algorithm that takes as input a global field $k$ and produces a curve over $k$ violating the local-global principle. Also, given a global field $k$ and a nonnegative integer $n$, one can effectively construct a curve $X$ over $k$ such that $\#X(k)=n$. Bibl. 26 titles.
@article{ZNSL_2010_377_a13,
     author = {B. Poonen},
     title = {Curves over every global field violating the local-global principle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--147},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/}
}
TY  - JOUR
AU  - B. Poonen
TI  - Curves over every global field violating the local-global principle
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 141
EP  - 147
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/
LA  - en
ID  - ZNSL_2010_377_a13
ER  - 
%0 Journal Article
%A B. Poonen
%T Curves over every global field violating the local-global principle
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 141-147
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/
%G en
%F ZNSL_2010_377_a13
B. Poonen. Curves over every global field violating the local-global principle. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 141-147. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/

[1] E. Artin, G. Whaples, “Axiomatic characterization of fields by the product formula for valuations”, Bull. Amer. Math. Soc., 51 (1945), 469–492 | DOI | MR | Zbl

[2] M. H. Baker, E. González-Jiménez, J. González, B. Poonen,, “Finiteness results for modular curves of genus at least 2”, Amer. J. Math., 127 (2005), 1325–1387 | DOI | MR | Zbl

[3] P. L. Clark, “An “anti-Hasse principle” for prime twists”, Int. J. Number Theory, 4 (2008), 627–637 | DOI | MR | Zbl

[4] P. L. Clark, Curves over global fields violating the Hasse principle: some systematic constructions, Preprint, IMRN, 2009-05-21, (to appear), arXiv: 0905.3459

[5] J.-I. Colliot-Thélène, “The Hasse principle in a pencil of algebraic varieties”, Number theory (Tiruchirapalli 1996), Contemp. Math., 210, Amer. Math. Soc., Providence, RI, 1998, 19–39 | DOI | MR | Zbl

[6] J.-I. Colliot-Thélène, D. Daniel, J.-J. Sansuc, “Descente et principe de Hasse pour certaines variétés rationnelles”, J. reine angew. Math., 320 (1980), 150–191 | MR | Zbl

[7] J.-I. Colliot-Thélène, B. Bjorn, “Algebraic families of nonzero elements of Shafarevich–Tate groups”, J. Amer. Math. Soc., 13:1 (2000), 83–99 | DOI | MR | Zbl

[8] J.-I. Colliot-Thélène, J.-J. Sansuc, P. Swinnerton-Dyer, “Intersections of two quadrics and Châtelet surfaces. I”, J. reine angew. Math., 373 (1987), 37–107 | MR | Zbl

[9] V. A. Dem'janenko, “Rational points of a class of algebraic curves”, Izv. Akad. Nauk SSSR Ser. Mat., 30 (1966), 1373–1396 (Russian) | MR | Zbl

[10] Thirteen papers on group theory, algebraic geometry, and algebraic topology, American Mathematical Society Translations, series 2, 66, Providence, RI, 1967, 246–272 | MR | Zbl

[11] F. Diamond, J. Shurman, A first course in modular forms, Graduate Texts in Mathematics, 228, Springer-Verlag, New York, 2005, xvi+436 pp. | MR | Zbl

[12] G. Faltings, “Endlichkeitssätze für abelsche Varietäten über Zahlkörpern”, Invent. Math., 73:3 (1983), 349–366 | DOI | MR | Zbl

[13] N. M. Katz, “Pinceaux de Lefschetz: théorème d'existence”, Lect. Notes Math., 340, Springer-Verlag, Berlin, 1973, 212–253 | DOI

[14] S. Lang, “Some applications of the local uniformization theorem”, Amer. J. Math., 76 (1954), 362–374 | DOI | MR | Zbl

[15] H. W. Lenstra Jr., “Algorithms in algebraic number theory”, Bull. Amer. Math. Soc. (N.S.), 26:2 (1992), 211–244 | DOI | MR | Zbl

[16] C.-E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins, Thesis, University of Uppsala, 1940, 97 pp. | MR

[17] Yu. I. Manin, “The $p$-torsion of elliptic curves is uniformly bounded”, Izv. Akad. Nauk SSSR Ser. Mat., 33 (1969), 459–465 (Russian) | DOI | MR | MR | Zbl | Zbl

[18] Mathematics of the USSR-Izvestiya, 3:3 (1969), 433–438 | DOI | MR | MR | Zbl | Zbl

[19] H. Nishimura, “Some remarks on rational points”, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 29 (1955), 189–192 | MR | Zbl

[20] P. Parent, A. Yafaev, “Proving the triviality of rational points on Atkin–Lehner quotients of Shimura curves”, Math. Ann., 339:4 (2007), 915–935 | DOI | MR | Zbl

[21] B. Poonen, “Existence of rational points on smooth projective varieties”, J. Eur. Math. Soc. (JEMS), 11:3 (2009), 529–543 | DOI | MR | Zbl

[22] B. Poonen, F. Pop, “First-order characterization of function field invariants over large fields”, Model theory with applications to algebra and analysis, v. 2, London Math. Soc. Lect. Note Ser., 350, Cambridge Univ. Press, Cambridge, 2008, 255–271 | MR | Zbl

[23] H. Reichardt, “Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen”, J. reine angew. Math., 184 (1942), 12–18 | DOI | MR | Zbl

[24] V. Rotger, A. Skorobogatov, A. Yafaev, “Failure of the Hasse principle for Atkin–Lehner quotients of Shimura curves over $\mathbb Q$”, Mosc. Math. J., 5:2 (2005), 463–476, 495 | MR | Zbl

[25] P. Samuel, “Compléments à un article de Hans Grauert sur la conjecture de Mordell”, Inst. Hautes Études Sci. Publ. Math., 29 (1966), 55–62 | DOI | MR

[26] L. Szpiro, “Propriétés numériques du faisceau dualisant relatif”, Séminaire sur les Pinceaux de Courbes de Genre au Moins Deux, Astérisque, 86, Société Mathématique de France, 1981, 44–78 | MR

[27] A. Van de Ven, “On the 2-connectedness of very ample divisors on a surface”, Duke Math. J., 46:2 (1979), 403–407 | DOI | MR | Zbl

[28] B. Viray, Failure of the Hasse principle for Châtelet surfaces in characteristic 2, Preprint, 2009-10-12 0902.3644