Curves over every global field violating the local-global principle
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 141-147
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			There is an algorithm that takes as input a global field $k$ and produces a curve over $k$ violating the local-global principle. Also, given a global field $k$ and a nonnegative integer $n$, one can effectively construct a curve $X$ over $k$ such that $\#X(k)=n$. Bibl. 26 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_377_a13,
     author = {B. Poonen},
     title = {Curves over every global field violating the local-global principle},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {141--147},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/}
}
                      
                      
                    B. Poonen. Curves over every global field violating the local-global principle. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 141-147. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a13/