A survey on B\"uchi's problem: new presentations and open problems
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 111-140

Voir la notice de l'article provenant de la source Math-Net.Ru

In a commutative ring with a unit, Büchi sequences are those sequences whose second difference of squares is the constant sequence (2). Sequences of elements $x_n$, satisfying $x_n^2=(x+n)^2$ for some fixed $x$ are Büchi sequences that we call trivial. Since we want to study sequences whose elements do not belong to certain subrings (e.g. for fields of rational functions $F(z)$ over a field $F$, we are interested in sequences that are not over $F$), the concept of trivial sequences may vary. Büchi's Problem for a ring asks, whether there exists a positive integer $M$ such that any Büchi sequence of length $M$ or more is trivial. We survey the current status of knowledge for Büchi's problem and its analogues for higher-order differences and higher powers. We propose several new and old open problems. We present a few new results and various sketches of proofs of old results (in particular Vojta's conditional proof for the case of integers and a rather detailed proof for the case of polynomial rings in characteristic zero), and present a new and short proof of the positive answer to Büchi's problem over finite fields with $p$ elements (originally proved by Hensley). We discuss applications to logic, which were the initial aim for solving these problems. Bibl. 30 titles.
@article{ZNSL_2010_377_a12,
     author = {H. Pasten and T. Pheidas and X. Vidaux},
     title = {A survey on {B\"uchi's} problem: new presentations and open problems},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {111--140},
     publisher = {mathdoc},
     volume = {377},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a12/}
}
TY  - JOUR
AU  - H. Pasten
AU  - T. Pheidas
AU  - X. Vidaux
TI  - A survey on B\"uchi's problem: new presentations and open problems
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 111
EP  - 140
VL  - 377
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a12/
LA  - en
ID  - ZNSL_2010_377_a12
ER  - 
%0 Journal Article
%A H. Pasten
%A T. Pheidas
%A X. Vidaux
%T A survey on B\"uchi's problem: new presentations and open problems
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 111-140
%V 377
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a12/
%G en
%F ZNSL_2010_377_a12
H. Pasten; T. Pheidas; X. Vidaux. A survey on B\"uchi's problem: new presentations and open problems. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 111-140. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a12/