The circle method with weights for the representation of integers by quadratic forms
Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 91-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

When attacking Diophantine counting problems by the circle method, the use of smoothly weighted counting functions has become commonplace to avoid technical difficulties. It can, however, be problematic to then recover corresponding results for the unweighted number of solutions. This paper looks at quadratic forms in four or more variables representing an integer. We show how an asymptotic formula for the number of unweighted solutions in an expanding region can be obtained despite applying a weighted version of the circle method. Moreover, by carefully choosing the weight, the resulting error term is made non-trivial. Bibl. 9 titles.
@article{ZNSL_2010_377_a11,
     author = {N. Niedermowwe},
     title = {The circle method with weights for the representation of integers by quadratic forms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--110},
     year = {2010},
     volume = {377},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a11/}
}
TY  - JOUR
AU  - N. Niedermowwe
TI  - The circle method with weights for the representation of integers by quadratic forms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 91
EP  - 110
VL  - 377
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a11/
LA  - en
ID  - ZNSL_2010_377_a11
ER  - 
%0 Journal Article
%A N. Niedermowwe
%T The circle method with weights for the representation of integers by quadratic forms
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 91-110
%V 377
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a11/
%G en
%F ZNSL_2010_377_a11
N. Niedermowwe. The circle method with weights for the representation of integers by quadratic forms. Zapiski Nauchnykh Seminarov POMI, Studies in number theory. Part 10, Tome 377 (2010), pp. 91-110. http://geodesic.mathdoc.fr/item/ZNSL_2010_377_a11/

[1] T. D. Browning, R. Dietmann, “On the representation of integers by quadratic forms”, Proc. London Math. Soc. (3), 96 (2008), 389–416 | DOI | MR | Zbl

[2] G. H. Hardy, J. E. Littlewood, “Some problems of “Partitio Numerorum”. I: A new solution of Waring's problem”, Göttinger Nachrichten, 1920, 33–54 | Zbl

[3] D. R. Heath-Brown, “Cubic forms in ten variables”, Proc. London Math. Soc. (3), 47 (1983), 225–257 | DOI | MR | Zbl

[4] D. R. Heath-Brown, “A new form of the circle method, and its application to quadratic forms”, J. reine angew. Math., 481 (1996), 149–206 | DOI | MR | Zbl

[5] H. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR

[6] A. V. Malyshev, “On the weighted number of integer points on a quadric”, Sem. Math. V. A. Steklov, 1, 1968, 1–30 | MR | Zbl

[7] B. Z. Moroz, “Distribution of integer points on multidimensional hyperboloids and cones”, Sem. Math. V. A. Steklov, 1, 1968, 31–41 | MR | Zbl

[8] N. Niedermowwe, “The density of $S$-integral points in projective space with respect to a quadric”, Acta Arith., 142 (2010), 145–156 | DOI | MR | Zbl

[9] N. Niedermowwe, Zeros of Forms with $S$-unit argument, D. Phil. Thesis, University of Oxford, 2009