Real zeros for certain classes of analytic functions determined by a majorant of infinite order
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 176-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Certain classes of entire functions or of functions analytic in the unit disk are treated; they are defined in terms of a radial majorant $\lambda$ that grows sufficiently fast. Under certain assumptions on $\lambda$, the zero sets for such a class are described that lie on $\mathbb R_+$ (respectively, on the segment $[0,1)$). Bibl. – 9 titles.
@article{ZNSL_2010_376_a7,
     author = {F. A. Shamoyan},
     title = {Real zeros for certain classes of analytic functions determined by a~majorant of infinite order},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {176--180},
     year = {2010},
     volume = {376},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - Real zeros for certain classes of analytic functions determined by a majorant of infinite order
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 176
EP  - 180
VL  - 376
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/
LA  - ru
ID  - ZNSL_2010_376_a7
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T Real zeros for certain classes of analytic functions determined by a majorant of infinite order
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 176-180
%V 376
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/
%G ru
%F ZNSL_2010_376_a7
F. A. Shamoyan. Real zeros for certain classes of analytic functions determined by a majorant of infinite order. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 176-180. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/

[1] Zh. Valiron, Analiticheskie funktsii, Gostekhizdat, M., 1957

[2] S. V. Bykov, F. A. Shamoyan, “O nulyakh tselykh funktsii s mazhorantoi beskonechnogo poryadka”, Algebra i Analiz, 21:6 (2009), 66–79 | MR

[3] F. A. Shamoyan, “O nulyakh analiticheskikh v kruge funktsii s zadannoi mazhorantoi vblizi ego granitsy”, Matem. zametki, 85:2 (2009), 300–312 | DOI | MR | Zbl

[4] B. Ya. Levin, Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956

[5] A. A. Goldberg, I. V. Ostrovskii, Raspredelenie znachenii meromorfnykh funktsii, Nauka, M., 1970 | MR

[6] W. K. Hayman, B. Korenblum, “A critical growth rate for functions regular in a disk”, Michigan Math. J., 27 (1980), 21–30 | DOI | MR | Zbl

[7] F. A. Shamoyan, “Faktorizatsionnaya teorema M. M. Dzhrbashyana i kharakterizatsiya nulei analiticheskikh funktsii s mazhorantoi konechnogo rosta”, Izv. AN ArmSSR. Matematika, 13 (1978), 405–422 | MR | Zbl

[8] A. E. Djrbashian, F. A. Shamoyan, Topics in the theory of $A^p_\alpha$ spaces, BSB Teubner, Leipzig, 1988 | MR | Zbl

[9] J. Clunie, “On the integral functions having preseribed asymptotic growth”, Canad. J. Math., 17 (1965), 396–404 | DOI | MR | Zbl