Real zeros for certain classes of analytic functions determined by a~majorant of infinite order
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 176-180
Voir la notice de l'article provenant de la source Math-Net.Ru
Certain classes of entire functions or of functions analytic in the unit disk are treated; they are defined in terms of a radial majorant $\lambda$ that grows sufficiently fast. Under certain assumptions on $\lambda$, the zero sets for such a class are described that lie on $\mathbb R_+$ (respectively, on the segment $[0,1)$). Bibl. – 9 titles.
@article{ZNSL_2010_376_a7,
author = {F. A. Shamoyan},
title = {Real zeros for certain classes of analytic functions determined by a~majorant of infinite order},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {176--180},
publisher = {mathdoc},
volume = {376},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/}
}
TY - JOUR AU - F. A. Shamoyan TI - Real zeros for certain classes of analytic functions determined by a~majorant of infinite order JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 176 EP - 180 VL - 376 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/ LA - ru ID - ZNSL_2010_376_a7 ER -
F. A. Shamoyan. Real zeros for certain classes of analytic functions determined by a~majorant of infinite order. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 176-180. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a7/