Remarks on BMO-regularity and AK-stability
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 116-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper concerns BMO-regularity and AK-stability for couples $(X,Y)$ of quasi-Banach lattices of measurable functions on the measure space $(\mathbb T,m)\times(\Omega,\mu)$, where $(\mathbb T,m)$ is the unit circle with Lebesgue measure. In an earlier work S. Kislyakov introduced a weaker version of BMO-regularity and conjectured that it is the same as the “strong” one in the case of couples of lattices having the Fatou property. Here we prove that these properties are indeed equivalent, thus verifying that BMO-regularity for couples is a self-dual property stable under division by a lattice. We also study another refinement of the AK-stability property and develop some techniques that allow us to slightly enlarge the class of weighted $l^p$-valued lattices for which AK-stability implies BMO-regularity. Finally, we discuss some points that might be relevant to the yet unanswered question about the relationship between AK-stability and BMO-regularity in general. Bibl. – 15 titles.
@article{ZNSL_2010_376_a5,
     author = {D. V. Rutsky},
     title = {Remarks on {BMO-regularity} and {AK-stability}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--166},
     year = {2010},
     volume = {376},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a5/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Remarks on BMO-regularity and AK-stability
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 116
EP  - 166
VL  - 376
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a5/
LA  - ru
ID  - ZNSL_2010_376_a5
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Remarks on BMO-regularity and AK-stability
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 116-166
%V 376
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a5/
%G ru
%F ZNSL_2010_376_a5
D. V. Rutsky. Remarks on BMO-regularity and AK-stability. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 116-166. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a5/

[1] Fan Ky, “Fixed-point and minimax theorems in locally convex topological linear spaces”, Proc. Nat. Acad. Sci. USA, 38 (1952), 121–126 | DOI | MR | Zbl

[2] S. V. Kisliakov, “Interpolation of $H_p$-spaces: some recent developments”, Israel Math. Conf., 13, 1999, 102–140 | MR | Zbl

[3] S. V. Kisliakov, Q. Xu, “Interpolation of weighted and vector-valued Hardy spaces”, Trans. Amer. Math. Soc., 343:1 (1994), 1–34 | DOI | MR | Zbl

[4] S. V. Kisliakov, Q. Xu, “Partial retractions for weighted Hardy spaces”, Studia Mathematica, 38:3 (2000), 251–264 | MR

[5] M. Cwikel, J. E. McCarthy, T. H. Wolff, “Interpolation between weighted Hardy spaces”, Proc. Amer. Math. Soc., 116:2 (1992), 381–388 | DOI | MR

[6] N. J. Kalton, “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[7] S. V. Kisliakov, “Bourgain's analytic projection revisited”, Proc. Amer. Math. Soc., 126:11 (1998), 3307–3314 | DOI | MR

[8] S. V. Kisliakov, “On BMO-regular couples of lattices of measurable functions”, Studia Math., 159:2 (2003), 277–289 | DOI | MR

[9] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, 1993 | MR | Zbl

[10] Y. Benyamini, Y. Sternfeld, “Spheres in infinite-dimensional normed spaces are Lipschitz contractible”, Proc. Amer. Math. Soc., 88:3 (1983), 439–445 | DOI | MR | Zbl

[11] G. Ya. Lozanovskii, “O nekotorykh banakhovykh strukturakh”, Sib. mat. zh., 10 (1969), 584–599 | MR

[12] I. I. Privalov, Granichnye svoistva analiticheskikh funktsii, GITTL, 1950

[13] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, BKhV-Peterburg, 2004

[14] S. V. Kislyakov, “O BMO-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i Analiz, 14:2 (2002), 117–135 | MR | Zbl

[15] D. V. Rutskii, “Dva zamechaniya o svyazi BMO-regulyarnosti i analiticheskoi ustoichivosti interpolyatsii dlya reshetok izmerimykh funktsii”, Zap. nauchn. semin. POMI, 366, 2009, 102–115