. The paper supplements the author's earlier work, which dealt with the situation of $n=2$. That work was based on R. Fefferman's theory, which makes it possible to verify the boundedness of certain linear operators on two-parameter Hardy spaces (i.e., Hardy spaces on the product of two Euclidean spaces $H^p(\mathbb R^{d_1}\times\mathbb R^{d_2})$). However, Fefferman's results are not applicable in the situation where the number of Euclidean factors is greater than 2. Here we employ the more complicated Carbery–Seeger theory, which is a further development of Fefferman's ideas. It allows us to verify the boundedness of some singular integral operators on the multiparameter Hardy spaces $H^p(\mathbb R^{d_1}\times\cdots\times\mathbb R^{d_n})$, which leads eventually to the required inequality of Littlewood–Paley type. Bibl. – 13 titles.
@article{ZNSL_2010_376_a4,
author = {N. N. Osipov},
title = {One-sided {Littlewood{\textendash}Paley} inequality in $\mathbb R^n$ for $0<p\le2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {88--115},
year = {2010},
volume = {376},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a4/}
}
N. N. Osipov. One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0
[1] J. L. Rubio de Francia, “A Littlewood–Paley inequality for arbitrary intervals”, Rev. Mat. Iberoamer., 1:2 (1985), 1–14 | DOI | MR | Zbl
[2] Jean-Lin Journé, “Calderón–Zygmund operators on product spaces”, Rev. Mat. Iberoamer., 1:3 (1985), 55–91 | MR | Zbl
[3] S. V. Kislyakov, D. V. Parilov, “O teoreme Litlvuda–Peli dlya proizvolnykh intervalov”, Zap. nauchn. sem. POMI, 327, 2005, 98–114 | MR | Zbl
[4] Robert Fefferman, “Calderón–Zygmund theory for product domains: $H^p$ spaces”, Proc. Natl. Acad. Sci. USA, 83 (1986), 840–843 | DOI | MR | Zbl
[5] N. N. Osipov, “Neravenstvo Litlvuda–Peli dlya proizvolnykh pryamougolnikov v $\mathbb R^2$ pri $0
\leq2$”, Algebra i analiz, 22:2 (2010), 164–184[6] Anthony Carbery, Andreas Seeger, “$H^p$- and $L^p$-variants of multiparameter Calderón–Zygmund theory”, Trans. Amer. Math. Soc., 334:2 (1992), 719–747 | DOI | MR | Zbl
[7] C. Fefferman, E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129 (1972), 137–193 | DOI | MR | Zbl
[8] R. F. Gundy, E. M. Stein, “$H^p$ theory for the poly-disc”, Proc. Natl. Acad. Sci. USA, 76 (1979), 1026–1029 | DOI | MR | Zbl
[9] Shuichi Sato, “Lusin functions and nontangential maximal functions in the $H^p$ theory on the product of upper half-spaces”, Tôhoku Math. Journ., 37 (1985), 1–13 | DOI | MR | Zbl
[10] Sun-Yung A. Chang, Robert Fefferman, “A continuous version of duality of $H^1$ with $BMO$ on the bidisc”, Ann. of Math., 112:1 (1980), 179–201 | DOI | MR | Zbl
[11] Elias M. Stein, Singular integrals and differentiability properties of function, Princeton, 1970 | MR
[12] S. V. Kislyakov, “Teorema Litlvuda–Peli dlya proizvolnykh intervalov: vesovye otsenki”, Zap. nauchn. sem. POMI, 355, 2008, 180–198
[13] Quanhua Xu, “Some properties of the quotient space $(L^1(\mathbf T^d)/H^1(D^d))$”, Illinois J. of Math., 37:3 (1993), 437–454 | MR | Zbl