Chebyshev $C_0$-operator polynomials and their representation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 64-87

Voir la notice de l'article provenant de la source Math-Net.Ru

Certain estimates for the resolvent of a block-discrete Schrödinger operator with a constant diagonal perturbation are obtained. For that, the resolvent is represented in terms of the Chebychev polynomials of the (in general, unbounded) operator that represents a block of the perturbation. Bibl. – 12 titles.
@article{ZNSL_2010_376_a3,
     author = {V. A. Kostin and M. N. Nebolsina},
     title = {Chebyshev $C_0$-operator polynomials and their representation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {64--87},
     publisher = {mathdoc},
     volume = {376},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a3/}
}
TY  - JOUR
AU  - V. A. Kostin
AU  - M. N. Nebolsina
TI  - Chebyshev $C_0$-operator polynomials and their representation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 64
EP  - 87
VL  - 376
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a3/
LA  - ru
ID  - ZNSL_2010_376_a3
ER  - 
%0 Journal Article
%A V. A. Kostin
%A M. N. Nebolsina
%T Chebyshev $C_0$-operator polynomials and their representation
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 64-87
%V 376
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a3/
%G ru
%F ZNSL_2010_376_a3
V. A. Kostin; M. N. Nebolsina. Chebyshev $C_0$-operator polynomials and their representation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 64-87. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a3/