Correction up to a function with sparse spectrum and uniformly convergent Fourier series
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 25-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 1984, the second author proved that, after correction on a set of arbitrarily small measure, any continuous function on a finite-dimensional compact Abelian group acquires sparse spectrum and uniformly convergent Fourier series. In the present paper we refine the result in two directions: first, we ensure uniform convergence in a stronger sense; second, we prove that the spectrum after correction can be put in even more peculiar sparse sets. Bibl. – 6 titles.
@article{ZNSL_2010_376_a1,
     author = {P. Ivanishvili and S. V. Kislyakov},
     title = {Correction up to a~function with sparse spectrum and uniformly convergent {Fourier} series},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {25--47},
     year = {2010},
     volume = {376},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a1/}
}
TY  - JOUR
AU  - P. Ivanishvili
AU  - S. V. Kislyakov
TI  - Correction up to a function with sparse spectrum and uniformly convergent Fourier series
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 25
EP  - 47
VL  - 376
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a1/
LA  - ru
ID  - ZNSL_2010_376_a1
ER  - 
%0 Journal Article
%A P. Ivanishvili
%A S. V. Kislyakov
%T Correction up to a function with sparse spectrum and uniformly convergent Fourier series
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 25-47
%V 376
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a1/
%G ru
%F ZNSL_2010_376_a1
P. Ivanishvili; S. V. Kislyakov. Correction up to a function with sparse spectrum and uniformly convergent Fourier series. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 25-47. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a1/

[1] S. V. Kislyakov, “Novaya teorema ob ispravlenii”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 305–330 | MR | Zbl

[2] F. G. Arutyunyan, “Predstavlenie funktsii kratnymi ryadami”, Dokl. AN Arm. SSR, 64 (1977), 72–76 | Zbl

[3] F. G. Arutyunyan, “Nekotoroe usilenie teoremy Menshova ‘Ob ispravlenii’ ”, Matem. zametki, 35:1 (1984), 31–41 | MR | Zbl

[4] A. B. Aleksandrov, “Essays on non locally convex Hardy classes”, Complex analysis and spectral theory, Seminar (Leningrad 1979–1980), Lecture Notes Math., 864, Springer-Verlag, 1981, 1–89 | DOI | MR

[5] A. B. Aleksandrov, “Spektralnye podprostranstva prostranstva $L^p$ pri $p1$”, Algebra i analiz, 19:3 (2007), 1–75 | MR

[6] S. V. Khruschev, “Teorema Menshova ob ispravlenii i gaussovskie protsessy”, Trudy Matem. in-ta im. V. A. Steklova AN SSSR, 155, 1981, 151–181 | MR | Zbl