On Toeplitz operators with unimodular symbols: left invertibility and similarity to isometries
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 5-24
Voir la notice de l'article provenant de la source Math-Net.Ru
Toeplitz operators with unimodular symbols on the Hardy space $H^2$ on the unit circle are considered. It is shown that the left invertibility of a Toeplitz operator with symbol $e^{it}\mapsto\theta(e^{it})e^{it/2}$, $t\in(0,2\pi)$, where $\theta$ is an inner function, depends on $\theta$. Also, Toeplitz operators that are similar to isometries are studed. Bibl. – 28 titles.
@article{ZNSL_2010_376_a0,
author = {M. F. Gamal'},
title = {On {Toeplitz} operators with unimodular symbols: left invertibility and similarity to isometries},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--24},
publisher = {mathdoc},
volume = {376},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a0/}
}
TY - JOUR AU - M. F. Gamal' TI - On Toeplitz operators with unimodular symbols: left invertibility and similarity to isometries JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 5 EP - 24 VL - 376 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a0/ LA - ru ID - ZNSL_2010_376_a0 ER -
M. F. Gamal'. On Toeplitz operators with unimodular symbols: left invertibility and similarity to isometries. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 38, Tome 376 (2010), pp. 5-24. http://geodesic.mathdoc.fr/item/ZNSL_2010_376_a0/