The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 167-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the present paper the invariant field of the adjoint action of the unitriangular group in the nilradical of any parabolic subalgebra is described. Bibl. – 7 titles.
@article{ZNSL_2010_375_a9,
     author = {V. V. Sevostynova},
     title = {The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--194},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/}
}
TY  - JOUR
AU  - V. V. Sevostynova
TI  - The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 167
EP  - 194
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/
LA  - ru
ID  - ZNSL_2010_375_a9
ER  - 
%0 Journal Article
%A V. V. Sevostynova
%T The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 167-194
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/
%G ru
%F ZNSL_2010_375_a9
V. V. Sevostynova. The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 167-194. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/

[1] R. W. Richardson, “Conjugacy classes in parabolic subgroups of semisimple algebraic groups”, Bull. London Math. Soc., 6 (1974), 21–24 | DOI | MR | Zbl

[2] M. Brion, “Représentations exceptionnelles des groupes semi-simplés”, Ann. Scient. Ec. Norm. Sup., 18 (1985), 345–387 | MR | Zbl

[3] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl

[4] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. prob. matematiki. Fund. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl

[5] Kh. Kraft, Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl

[6] A. N. Panov, V. V. Sevostyanova, “Regulyarnye $N$-orbity v nilradikale parabolicheskoi podalgebry”, Trudy mezhdunarodnoi konferentsii po algebre i teorii chisel, posvyaschennoi 80-letiyu V. E. Voskresenskogo, Izd-vo “Samarskii universitet”, Samara, 2007, 152–161

[7] V. V. Sevostyanova, “Pole invariantov prisoedinënnogo deistviya unitreugolnoi gruppy”, Tezisy dokladov letnei shkoly-konferentsii “Algebry Li, algebraicheskie gruppy i teoriya invariantov”, Izd-vo “Univers grupp”, Samara, 2009, 44–45