The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 167-194
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the present paper the invariant field of the adjoint action of the unitriangular group in the nilradical of any parabolic subalgebra is described. Bibl. – 7 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_375_a9,
     author = {V. V. Sevostynova},
     title = {The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {167--194},
     publisher = {mathdoc},
     volume = {375},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/}
}
                      
                      
                    TY - JOUR AU - V. V. Sevostynova TI - The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 167 EP - 194 VL - 375 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/ LA - ru ID - ZNSL_2010_375_a9 ER -
%0 Journal Article %A V. V. Sevostynova %T The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 167-194 %V 375 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/ %G ru %F ZNSL_2010_375_a9
V. V. Sevostynova. The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 167-194. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/