@article{ZNSL_2010_375_a9,
author = {V. V. Sevostynova},
title = {The invariant field of the adjoint action of the unitriangular group in the nilradical of a~parabolic subalgebra},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {167--194},
year = {2010},
volume = {375},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/}
}
TY - JOUR AU - V. V. Sevostynova TI - The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 167 EP - 194 VL - 375 UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/ LA - ru ID - ZNSL_2010_375_a9 ER -
V. V. Sevostynova. The invariant field of the adjoint action of the unitriangular group in the nilradical of a parabolic subalgebra. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 167-194. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a9/
[1] R. W. Richardson, “Conjugacy classes in parabolic subgroups of semisimple algebraic groups”, Bull. London Math. Soc., 6 (1974), 21–24 | DOI | MR | Zbl
[2] M. Brion, “Représentations exceptionnelles des groupes semi-simplés”, Ann. Scient. Ec. Norm. Sup., 18 (1985), 345–387 | MR | Zbl
[3] M. Goto, F. Grosskhans, Poluprostye algebry Li, Mir, M., 1981 | MR | Zbl
[4] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Itogi nauki i tekhniki. Sovr. prob. matematiki. Fund. napravleniya, 55, VINITI, M., 1989, 137–309 | MR | Zbl
[5] Kh. Kraft, Geometricheskie metody v teorii invariantov, Mir, M., 1987 | MR | Zbl
[6] A. N. Panov, V. V. Sevostyanova, “Regulyarnye $N$-orbity v nilradikale parabolicheskoi podalgebry”, Trudy mezhdunarodnoi konferentsii po algebre i teorii chisel, posvyaschennoi 80-letiyu V. E. Voskresenskogo, Izd-vo “Samarskii universitet”, Samara, 2007, 152–161
[7] V. V. Sevostyanova, “Pole invariantov prisoedinënnogo deistviya unitreugolnoi gruppy”, Tezisy dokladov letnei shkoly-konferentsii “Algebry Li, algebraicheskie gruppy i teoriya invariantov”, Izd-vo “Univers grupp”, Samara, 2009, 44–45