Representations of algebraic groups of type $C_n$ with small weight multiplicities
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 140-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We find lower estimates for the maximal weight multiplicities in irreducible representations of algebraic groups of type $C_n$ in characteristic $p\leq7$. If $n\geq8$ and $p\ne2$, then for an irreducible representation such multiplicity is either at least $n-4-[n]_4$, where $[n]_4$ is the residue of $n$ modulo 4, or all weight multiplicities are equal to 1. For $p=2$ the situation is more complicated and for every $n$ and $l$ there exists a class of representations with the maximal weight multiplicity equal to $2^l$. For symplectic groups in characteristic $p>7$ and spinor groups similar results were obtained earlier. Bibl. – 15 titles.
@article{ZNSL_2010_375_a8,
     author = {A. A. Osinovskaya and I. D. Suprunenko},
     title = {Representations of algebraic groups of type $C_n$ with small weight multiplicities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--166},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
AU  - I. D. Suprunenko
TI  - Representations of algebraic groups of type $C_n$ with small weight multiplicities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 140
EP  - 166
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/
LA  - ru
ID  - ZNSL_2010_375_a8
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%A I. D. Suprunenko
%T Representations of algebraic groups of type $C_n$ with small weight multiplicities
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 140-166
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/
%G ru
%F ZNSL_2010_375_a8
A. A. Osinovskaya; I. D. Suprunenko. Representations of algebraic groups of type $C_n$ with small weight multiplicities. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 140-166. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/

[1] A. A. Baranov, A. A. Osinovskaya, I. D. Suprunenko, “Modulyarnye predstavleniya klassicheskikh grupp s malymi kratnostyami vesov”, Sovremennaya matematika i ee prilozheniya (algebra), 60, In-t Kibernetiki AN Gruzii, Tbilisi, 2008, 163–175

[2] A. Borel, “Svoistva i lineinye predstavleniya grupp Shevalle”, Seminar po algebraicheskim gruppam, Mir, M., 1973, 9–59 | MR

[3] N. Burbaki, Gruppy i algebry Li, gl. IV–VI, Mir, M., 1972 | MR | Zbl

[4] N. Burbaki, Gruppy i algebry Li, gl. VII–VIII, Mir, M., 1978 | MR

[5] A. E. Zalesskii, I. D. Suprunenko, “Predstavleniya razmernosti $(p^n\pm1)$ simplekticheskoi gruppy stepeni $2n$ nad konechnym polem”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1987, no. 6, 9–15 | MR

[6] A. A. Osinovskaya, I. D. Suprunenko, “Predstavleniya algebraicheskikh grupp tipa $D_n$ v kharakteristike 2 s malymi kratnostyami vesov”, Zap. nauchn. semin. POMI, 365, 2009, 182–195 | Zbl

[7] R. Steinberg, Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[8] A. A. Baranov, I. D. Suprunenko, “Branching rules for modular fundamental representations of symplectic groups”, Bull. London Math. Soc., 32 (2000), 409–420 | DOI | MR | Zbl

[9] G. Hogeweij, “Almost-classical Lie algebras, I”, Proc. Kon. Nederl. Acad. Wetensch. A, 85 (1982), 441–452 | MR

[10] J. C. Jantzen, Darstellungen halbeinfacher algebraicher Gruppen und zugeordnete kontravariante Formen, Bonner math. Schr., 67, 1973 | MR | Zbl

[11] J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., AMS, Providence, 2003 | MR | Zbl

[12] G. M. Seitz, The maximal subgroups of classical algebraic groups, Memoirs of the Amer. Math. Soc., 67, no. 365, 1987 | DOI | MR

[13] S. Smith, “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl

[14] R. Steinberg, “Representations of algebraic groups”, Nagoya Math. J., 22 (1963), 33–56 | MR | Zbl

[15] I. D. Suprunenko, The minimal polynomials of unipotent elements in irreducible representations of the classical groups in odd characteristic, Memoirs of the Amer. Math. Soc., 200, no. 939, 2009 | DOI | MR