Representations of algebraic groups of type $C_n$ with small weight multiplicities
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 140-166

Voir la notice de l'article provenant de la source Math-Net.Ru

We find lower estimates for the maximal weight multiplicities in irreducible representations of algebraic groups of type $C_n$ in characteristic $p\leq7$. If $n\geq8$ and $p\ne2$, then for an irreducible representation such multiplicity is either at least $n-4-[n]_4$, where $[n]_4$ is the residue of $n$ modulo 4, or all weight multiplicities are equal to 1. For $p=2$ the situation is more complicated and for every $n$ and $l$ there exists a class of representations with the maximal weight multiplicity equal to $2^l$. For symplectic groups in characteristic $p>7$ and spinor groups similar results were obtained earlier. Bibl. – 15 titles.
@article{ZNSL_2010_375_a8,
     author = {A. A. Osinovskaya and I. D. Suprunenko},
     title = {Representations of algebraic groups of type $C_n$ with small weight multiplicities},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--166},
     publisher = {mathdoc},
     volume = {375},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/}
}
TY  - JOUR
AU  - A. A. Osinovskaya
AU  - I. D. Suprunenko
TI  - Representations of algebraic groups of type $C_n$ with small weight multiplicities
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 140
EP  - 166
VL  - 375
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/
LA  - ru
ID  - ZNSL_2010_375_a8
ER  - 
%0 Journal Article
%A A. A. Osinovskaya
%A I. D. Suprunenko
%T Representations of algebraic groups of type $C_n$ with small weight multiplicities
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 140-166
%V 375
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/
%G ru
%F ZNSL_2010_375_a8
A. A. Osinovskaya; I. D. Suprunenko. Representations of algebraic groups of type $C_n$ with small weight multiplicities. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 140-166. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a8/