On subgroups of the general linear group containing a~non-split maximal torus
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 130-139
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G=\mathrm{GL}(n,k)$ be the general linear group of degree $n$ over a field $k$ of odd characteristic. We consider subgroups of $G$ containing a non-split maximal torus stemming from a radical extension of degree $n$ of the ground field $k$. We describe the structure of nets of ideals over a ring, related to intermediate subgroups containing a transvection. Bibl. – 13 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_375_a7,
     author = {V. A. Koibaev and A. V. Shilov},
     title = {On subgroups of the general linear group containing a~non-split maximal torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--139},
     publisher = {mathdoc},
     volume = {375},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/}
}
                      
                      
                    TY - JOUR AU - V. A. Koibaev AU - A. V. Shilov TI - On subgroups of the general linear group containing a~non-split maximal torus JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 130 EP - 139 VL - 375 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/ LA - ru ID - ZNSL_2010_375_a7 ER -
V. A. Koibaev; A. V. Shilov. On subgroups of the general linear group containing a~non-split maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 130-139. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/