On subgroups of the general linear group containing a non-split maximal torus
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 130-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $G=\mathrm{GL}(n,k)$ be the general linear group of degree $n$ over a field $k$ of odd characteristic. We consider subgroups of $G$ containing a non-split maximal torus stemming from a radical extension of degree $n$ of the ground field $k$. We describe the structure of nets of ideals over a ring, related to intermediate subgroups containing a transvection. Bibl. – 13 titles.
@article{ZNSL_2010_375_a7,
     author = {V. A. Koibaev and A. V. Shilov},
     title = {On subgroups of the general linear group containing a~non-split maximal torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--139},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/}
}
TY  - JOUR
AU  - V. A. Koibaev
AU  - A. V. Shilov
TI  - On subgroups of the general linear group containing a non-split maximal torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 130
EP  - 139
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/
LA  - ru
ID  - ZNSL_2010_375_a7
ER  - 
%0 Journal Article
%A V. A. Koibaev
%A A. V. Shilov
%T On subgroups of the general linear group containing a non-split maximal torus
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 130-139
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/
%G ru
%F ZNSL_2010_375_a7
V. A. Koibaev; A. V. Shilov. On subgroups of the general linear group containing a non-split maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 130-139. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/

[1] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauch. semin. LOMI, 64, 1976, 12–29 | MR | Zbl

[2] Z. I. Borevich, V. A. Koibaev, “O koltsakh mnozhitelei, svyazannykh s promezhutochnymi podgruppami, dlya kvadratichnykh torov”, Vestnik SPbGU, 1:2 (1993), 5–10 | MR | Zbl

[3] V. A. Koibaev, “Podgruppy gruppy $\operatorname{GL}(2,\mathbb Q)$, soderzhaschie nerasschepimyi maksimalnyi tor”, Dokl. AN SSSR, 312:1 (1990), 36–38 | MR

[4] V. A. Koibaev, “Transvektsii v podgruppakh polnoi lineinoi gruppy, soderzhaschikh nerasschepimyi maksimalnyi tor”, Algebra i analiz, 21:5 (2009), 70–86 | MR

[5] V. A. Koibaev, Podgruppy gruppy $\operatorname{GL}(2,k),$ soderzhaschie nerasschepimyi tor, Itogi nauki. Ser. matem. monografiya, Vladikavkaz, 2009

[6] D. Z. Djokovic, “Subgroups of compact Lie groups containing a maximal torus are closed”, Proc. Amer. Math. Soc., 83:2 (1981), 431–432 | DOI | MR | Zbl

[7] R. H. Dye, “Maximal subgroups of symplectic groups stabilizing spreads, I”, J. Algebra, 87:2 (1984), 493–509 ; “II”, J. London. Math. Soc., 40:2 (1989), 215–226 | DOI | MR | Zbl | DOI | MR | Zbl

[8] R. H. Dye, “Maximal subgroups of $\operatorname{PS}p_{6n}(q)$ stabilizing spreads of totally isotropic planes”, J. Algebra, 99 (1986), 111–129 | DOI | MR

[9] R. H. Dye, “Spreads and classes of maximal subgroups of $\operatorname{GL}_n(q)$, $\operatorname{SL}_n(q)$, $\operatorname{PGL}_n(q)$ and $\operatorname{PSL}_n(q)$”, Ann. Math. Pura Appl., 158 (1991), 33–50 | DOI | MR | Zbl

[10] W. . Kantor, “Linear groups containing a Singer cycle”, J. Algebra, 62:1 (1980), 232–234 | DOI | MR | Zbl

[11] V. P. Platonov, “Subgroups of algebraic groups over local or a global field containing a maximal torus”, C. R. Acad. Sci. Paris, 318:10 (1994), 899–903 | MR | Zbl

[12] G. M. Seitz, “Subgroups of finite groups of Lie type”, J. Algebra, 61:1 (1979), 16–27 | DOI | MR | Zbl

[13] G. M. Seitz, “Root subgroups for maximal tori in finite groups of Lie type”, Pacif. J. Math., 106:1 (1983), 153–244 | DOI | MR | Zbl