On subgroups of the general linear group containing a~non-split maximal torus
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 130-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G=\mathrm{GL}(n,k)$ be the general linear group of degree $n$ over a field $k$ of odd characteristic. We consider subgroups of $G$ containing a non-split maximal torus stemming from a radical extension of degree $n$ of the ground field $k$. We describe the structure of nets of ideals over a ring, related to intermediate subgroups containing a transvection. Bibl. – 13 titles.
@article{ZNSL_2010_375_a7,
     author = {V. A. Koibaev and A. V. Shilov},
     title = {On subgroups of the general linear group containing a~non-split maximal torus},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {130--139},
     publisher = {mathdoc},
     volume = {375},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/}
}
TY  - JOUR
AU  - V. A. Koibaev
AU  - A. V. Shilov
TI  - On subgroups of the general linear group containing a~non-split maximal torus
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 130
EP  - 139
VL  - 375
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/
LA  - ru
ID  - ZNSL_2010_375_a7
ER  - 
%0 Journal Article
%A V. A. Koibaev
%A A. V. Shilov
%T On subgroups of the general linear group containing a~non-split maximal torus
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 130-139
%V 375
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/
%G ru
%F ZNSL_2010_375_a7
V. A. Koibaev; A. V. Shilov. On subgroups of the general linear group containing a~non-split maximal torus. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 130-139. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a7/