Dennis–Vaserstein type decompositions
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 48-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove a generalisation of Dennis–Vaserstein decomposition for an arbitrary pair of maximal parabolic subgroups $P_r$ and $P_s$ in the general linear group $\mathrm{GL}(n,R)$, provided that $r-s\geq\mathrm{sr}(R)$. The usual Dennis–Vaserstein decomposition is the special case where $r=n-1$, $s=1$. Bibl. – 23 titles.
@article{ZNSL_2010_375_a3,
     author = {N. A. Vavilov and S. S. Sinchuk},
     title = {Dennis{\textendash}Vaserstein type decompositions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {48--60},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a3/}
}
TY  - JOUR
AU  - N. A. Vavilov
AU  - S. S. Sinchuk
TI  - Dennis–Vaserstein type decompositions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 48
EP  - 60
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a3/
LA  - ru
ID  - ZNSL_2010_375_a3
ER  - 
%0 Journal Article
%A N. A. Vavilov
%A S. S. Sinchuk
%T Dennis–Vaserstein type decompositions
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 48-60
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a3/
%G ru
%F ZNSL_2010_375_a3
N. A. Vavilov; S. S. Sinchuk. Dennis–Vaserstein type decompositions. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 48-60. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a3/

[1] N. A. Vavilov, “Parabolicheskie podgruppy grupp Shevalle nad kommutativnym koltsom”, Zap. nauchn. semin. LOMI, 116, 1982, 20–43 | MR | Zbl

[2] L. N. Vasershtein, “Stabilnyi rang kolets i razmernost topologicheskikh prostranstv”, Funkts. Analiz, 5:2 (1971), 17–27 | MR | Zbl

[3] L. N. Vasershtein, “Stabilizatsiya klassicheskikh grupp nad koltsami”, Mat. Sb., 93(135):2 (1974), 268–295 | MR | Zbl

[4] E. B. Plotkin, Setevye podgruppy grupp Shevalle i voprosy stabilizatsii $\mathrm K_1$-funktora, Kand. diss., LGU, 1985, 1–118

[5] E. B. Plotkin, “Syur'ektivnaya stabilizatsiya $\mathrm K_1$-funktora dlya nekotorykh isklyuchitelnykh grupp Shevalle”, Zap. nauchn. semin. POMI, 198, 1991, 65–88 | MR | Zbl

[6] A. A. Suslin, M. S. Tulenbaev, “Teorema o stabilizatsii dlya $\mathrm K_2$-funktora Milnora”, Zap. nauchn. semin. LOMI, 64, 1976, 131–152 | MR | Zbl

[7] E. Abe, K. Suzuki, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 28:1 (1976), 185–198 | DOI | MR | Zbl

[8] A. Bak, V. Petrov, Guoping Tang, “Stability for quadratic $\mathrm K_1$”, $\mathrm K$-Theory, 30:1 (2003), 1–11 | DOI | MR | Zbl

[9] A. Bak, Guoping Tang, “Stability for hermitian $\mathrm K_1$”, J. Pure Appl. Algebra, 150 (2000), 107–121 | DOI | MR | Zbl

[10] H. Bass, “$\mathrm K$-theory and stable algebra”, Publ. Math. Inst. Hautes Ét. Sci., 22 (1964), 5–60 | DOI | MR | Zbl

[11] K. Dennis, “Stability for $\mathrm K_2$”, Lect. Notes. Math., 353, 1973, 85–94 | DOI | MR | Zbl

[12] I. V. Erovenko, “$\operatorname{SL}_N(F[x])$ is not boundedly generated by elementary matrices: explicit proof”, Electr. J. Linear Algebra, 11 (2004), 162–167 | MR | Zbl

[13] W. van der Kallen, “$\operatorname{SL}_3(\operatorname{Co}[x])$ does not have bounded word length”, Lect. Notes Math., 966, Springer, 1982, 357–361 | DOI | MR

[14] M. Kolster, “On injective stability for $\mathrm K_2$”, Lect. Notes Math., 966, 1982, 128–168 | DOI | MR | Zbl

[15] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. 4ème sér., 2 (1969), 1–62 | MR | Zbl

[16] E. Plotkin, “Stability theorems for $K$-functors for Chevalley groups”, Proc. Conf. Non-Associative Algebras and Related Topics (Hiroshima–1990), World Sci., London et al., 1991, 203–217 | MR | Zbl

[17] E. Plotkin, “On the stability of the $\mathrm K_1$-functor for Chevalley groups of type $\mathrm E_7$”, J. Algebra, 210 (1998), 67–85 | DOI | MR | Zbl

[18] E. Plotkin, M. R. Stein, N. Vavilov, Stability of $\mathrm K$-functors modeled on Chevalley groups, revisited (to appear)

[19] R. W. Sharpe, “On the structure of the unitary Steinberg group”, Ann. Math., 96:3 (1972), 444–479 | DOI | MR | Zbl

[20] R. W. Sharpe, “On the structure of the Steinberg group $\operatorname{St}(\Lambda)$”, J. Algebra, 68 (1981), 453–467 | DOI | MR | Zbl

[21] M. R. Stein, “Surjective stability in dimension $0$ for $\mathrm K_2$ and related functors”, Trans. Amer. Math. Soc., 178 (1973), 176–191 | MR

[22] M. R. Stein, “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groupes”, Japan J. Math., 4:1 (1978), 77–108 | MR | Zbl

[23] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl