On the embedding problem for number fields in the case of elementary abelian kernel
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 203-208 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The Galois embedding problem is considered in the case of number fields and elementary abelian kernel. New cases are discovered in which the concordance condition is sufficient for the existence of a solution of the embedding problem. In particular, it is true when the order of the kernel is the cube of a prime integer. Bibl. – 5 titles.
@article{ZNSL_2010_375_a11,
     author = {A. V. Yakovlev},
     title = {On the embedding problem for number fields in the case of elementary abelian kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {203--208},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a11/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - On the embedding problem for number fields in the case of elementary abelian kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 203
EP  - 208
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a11/
LA  - ru
ID  - ZNSL_2010_375_a11
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T On the embedding problem for number fields in the case of elementary abelian kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 203-208
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a11/
%G ru
%F ZNSL_2010_375_a11
A. V. Yakovlev. On the embedding problem for number fields in the case of elementary abelian kernel. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 203-208. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a11/

[1] B. N. Delone, D. K. Faddeev, “Issledovaniya po geometrii teorii Galua”, Mat. sb., 15(57):2 (1944), 243–284 | MR | Zbl

[2] H. Hasse, “Existenz und Mannigfaltigkeit Abelscher Algebren mit vorgegebener Galoisgruppe über einem Teilkörper des Grundkörpers”, Math. Nachr., 1:1 (1948), 40–61 | DOI | MR | Zbl

[3] A. V. Yakovlev, “Zadacha pogruzheniya polei”, DAN SSSR, 150:5 (1963), 1009–1011 | Zbl

[4] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 645–660 | MR | Zbl

[5] A. V. Yakovlev, “Zadacha pogruzheniya dlya chislovykh polei”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 211–224 | MR | Zbl