Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 195-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We propose a new approach to the description of quotient divisible groups. This approach allows to give an explicit and natural proof of the duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups with marked basic subgroups. Bibl. – 3 titles.
@article{ZNSL_2010_375_a10,
     author = {A. V. Yakovlev},
     title = {Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {195--202},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 195
EP  - 202
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/
LA  - ru
ID  - ZNSL_2010_375_a10
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 195-202
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/
%G ru
%F ZNSL_2010_375_a10
A. V. Yakovlev. Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 195-202. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/

[1] A. A. Fomin, W. Wickless,, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl

[2] A. A. Fomin, “Invariants for abelian groups and dual exact sequences”, Journal of Algebra, 323 (2009), 2544–2565 | DOI | MR

[3] A. V. Yakovlev, “K probleme klassifikatsii abelevykh grupp bez krucheniya konechnogo ranga”, Zap. nauchn. semin. LOMI, 57, 1976, 171–175 | MR | Zbl