Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 195-202
Cet article a éte moissonné depuis la source Math-Net.Ru
We propose a new approach to the description of quotient divisible groups. This approach allows to give an explicit and natural proof of the duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups with marked basic subgroups. Bibl. – 3 titles.
@article{ZNSL_2010_375_a10,
author = {A. V. Yakovlev},
title = {Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {195--202},
year = {2010},
volume = {375},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/}
}
TY - JOUR AU - A. V. Yakovlev TI - Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 195 EP - 202 VL - 375 UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/ LA - ru ID - ZNSL_2010_375_a10 ER -
A. V. Yakovlev. Duality of the categories of torsion free abelian groups of finite rank and quotient divisible groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 195-202. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a10/
[1] A. A. Fomin, W. Wickless,, “Quotient divisible abelian groups”, Proc. Amer. Math. Soc., 126:1 (1998), 45–52 | DOI | MR | Zbl
[2] A. A. Fomin, “Invariants for abelian groups and dual exact sequences”, Journal of Algebra, 323 (2009), 2544–2565 | DOI | MR
[3] A. V. Yakovlev, “K probleme klassifikatsii abelevykh grupp bez krucheniya konechnogo ranga”, Zap. nauchn. semin. LOMI, 57, 1976, 171–175 | MR | Zbl