Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 5-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $R$ be a commutative ring all of whose proper factor rings are finite and such that there exists a unit of infinite order. We show that for a subgroup $P$ in $G=\mathrm{SL}(n,R)$, $n\ge3$, or in $G=\mathrm{Sp}(2l,R)$, $l\ge2$, containing Borel subgroup $B$, the following alternative holds. Either $P$ contains a relative elementary subgroup $E_I$ for some ideal $I\neq0$, or $H$ is contained in a proper standard parabolic subgroup. For Dedekind rings of arithmetic type this allows, under some mild additional assumptions on units, to completely describe overgroups of $B$ in $G$. Bibl. – 30 titles.
@article{ZNSL_2010_375_a0,
     author = {A. V. Alexandrov and N. A. Vavilov},
     title = {Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over {a~Dedekind} ring of arithmetic type},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--21},
     year = {2010},
     volume = {375},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a0/}
}
TY  - JOUR
AU  - A. V. Alexandrov
AU  - N. A. Vavilov
TI  - Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 5
EP  - 21
VL  - 375
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a0/
LA  - ru
ID  - ZNSL_2010_375_a0
ER  - 
%0 Journal Article
%A A. V. Alexandrov
%A N. A. Vavilov
%T Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 5-21
%V 375
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a0/
%G ru
%F ZNSL_2010_375_a0
A. V. Alexandrov; N. A. Vavilov. Parabolic subgroups of $\mathrm{SL}_n$ and $\mathrm{Sp}_{2l}$ over a Dedekind ring of arithmetic type. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 19, Tome 375 (2010), pp. 5-21. http://geodesic.mathdoc.fr/item/ZNSL_2010_375_a0/

[1] Kh. Bass, Dzh. Milnor, Zh.-P. Serr, “Reshenie kongruents-problemy dlya $\operatorname{SL}_n(n\geqslant3)$ i $\operatorname{Sp}_{2n}(n\geqslant2)$”, Matematika (period. sb. perev. in. statei), 14:6 (1970), 64–128 ; 15:1 (1971), 44–60 | Zbl | Zbl

[2] Z. I. Borevich, “O parabolicheskikh podgruppakh v lineinykh gruppakh nad polulokalnym koltsom”, Vestn. Leningr. un-ta, 1976, no. 13, 16–24 | Zbl

[3] Z. I. Borevich, “O parabolicheskikh podgruppakh v spetsialnoi lineinoi gruppe nad polulokalnym koltsom”, Vestn. Leningr. un-ta, 1976, no. 19, 29–34 | Zbl

[4] Z. I. Borevich, N. A. Vavilov, V. Narkevich, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom”, Zap. nauchn. semin. LOMI, 94, 1979, 13–20 | MR | Zbl

[5] N. Burbaki, Gruppy i algebry Li, gl. IV–VI, Mir, M, 1972 ; гл. VII, VIII, 1978 | MR | Zbl

[6] N. A. Vavilov, “O parabolicheskikh kongruents-podgruppakh v lineinykh gruppakh”, Zap. nauchn. semin. LOMI, 64, 1976, 55–63 | MR | Zbl

[7] N. A. Vavilov, “Parabolicheskie podgruppy polnoi lineinoi gruppy nad dedekindovym koltsom arifmeticheskogo tipa”, Zap. nauchn. semin. LOMI, 71, 1977, 66–79 | MR | Zbl

[8] N. A. Vavilov, “Podgruppy polnoi lineinoi gruppy nad koltsom, soderzhaschie gruppu kletochno treugolnykh matrits, I”, Vestn. Leningr. un-ta, 1977, no. 19, 139–140 ; “II”, 1982, No 13, 5–10 | MR | Zbl

[9] N. A. Vavilov, “O parabolicheskikh podgruppakh grupp Shevalle nad polulokalnym koltsom”, Zap. nauchn. semin. LOMI, 75, 1978, 43–58 | MR | Zbl

[10] N. A. Vavilov, “O parabolicheskikh podgruppakh grupp Shevalle skreschennogo tipa nad polulokalnym koltsom”, Zap. nauchn. semin. LOMI, 94, 1979, 21–36 | MR | Zbl

[11] N. A. Vavilov, “Parabolicheskie podgruppy grupp Shevalle nad kommutativnym koltsom”, Zap. nauchn. semin. LOMI, 116, 1982, 20–43 | MR | Zbl

[12] N. A. Vavilov, “O gruppe $\operatorname{SL}_n$ nad dedekindovym koltsom arifmeticheskogo tipa”, Vestn. Leningr. un-ta, 1983, no. 7, 5–10 | MR | Zbl

[13] N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom arifmeticheskogo tipa”, Izv. VUZov, 1987, no. 12, 14–20 | MR | Zbl

[14] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\operatorname{Ep}(2l,R)$”, Algebra i Analiz, 15:4 (2003), 72–114 | MR | Zbl

[15] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta. Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR

[16] L. N. Vasershtein, “O gruppe $\operatorname{SL}_2$ nad dedekindovymi koltsami arifmeticheskogo tipa”, Mat. Sb., 89(131):2 (1972), 313–322 | MR | Zbl

[17] I. Z. Golubchik, “O podgruppakh polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vsesoyuzn. Algebr. konf., Tez. dokl., v. 1, 1981, 39–40

[18] E. V. Dybkova, “O nekotorykh kongruents-podgruppakh simplekticheskoi gruppy”, Zap. nauchn. semin. LOMI, 64, 1976, 80–91 | MR | Zbl

[19] N. S. Romanovskii, “O podgruppakh obschei i spetsialnoi lineinykh gruppakh nad koltsom”, Mat. Zametki, 9:6 (1971), 699–708 | MR | Zbl

[20] Zh.-P. Serr, “Problema kongruents-podgrupp dlya $\operatorname{SL}_2$”, Matematika (period. sb. perev. in. statei), 15:6 (1971), 12–45 | Zbl

[21] B. Liehl, “On the group $\operatorname{SL}_2$ over orders of arithmetic type”, J. reine angew. Math., 323:1 (1981), 153–171 | DOI | MR | Zbl

[22] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup., $4^\text{\`eme}$ sér., 2 (1969), 1–62 | MR | Zbl

[23] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[24] A. Stepanov, N. Vavilov, “Decomposition of transvections: a theme with variations”, K-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[25] K. Suzuki, “On parabolic subgroups of Chevalley groups over local rings”, Tôhoku Math. J., 28:1 (1976), 57–66 | DOI | MR | Zbl

[26] K. Suzuki, “On parabolic subgroups of Chevalley groups over commutative rings”, Sci. Repts Tokyo Kyoiku Daigaku, 13:366–382 (1977), 225–232 | MR | Zbl

[27] J. Tits, “Théorème de Bruhat et sous-groupes paraboliques”, C. R. Acad. Sci. Paris, 254 (1962), 2910–2912 | MR | Zbl

[28] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris Sér A, 283 (1976), 693–695 | MR | Zbl

[29] N. Vavilov, “Intermediate subgroups in Chevalley groups”, Proc. Conf. Groups of Lie Type and their Geometries, Como – 1993, Cambridge Univ. Press, 1995, 233–280 | DOI | MR | Zbl

[30] C. Wenzel, “Classification of all parabolic subgroup-schemes of a reductive linear algebraic group over an algebraically closed field”, Trans. Amer. Math. Soc., 337:1 (1993), 211–218 | DOI | MR | Zbl