On the spectrum of anomalous dimensions of composite operators in the scalar field theory
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 136-169
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the one-loop approximation the problem of the diagonalization of the mixing matrix is equivalent some quantum mechanical eigenvalue problem. For the illustration of this technik we consider two simplest examples of the scalar field theories. Bibl. – 27 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_374_a8,
     author = {S. E. Derkachov and A. N. Manashov},
     title = {On the spectrum of anomalous dimensions of composite operators in the scalar field theory},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {136--169},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a8/}
}
                      
                      
                    TY - JOUR AU - S. E. Derkachov AU - A. N. Manashov TI - On the spectrum of anomalous dimensions of composite operators in the scalar field theory JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 136 EP - 169 VL - 374 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a8/ LA - ru ID - ZNSL_2010_374_a8 ER -
%0 Journal Article %A S. E. Derkachov %A A. N. Manashov %T On the spectrum of anomalous dimensions of composite operators in the scalar field theory %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 136-169 %V 374 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a8/ %G ru %F ZNSL_2010_374_a8
S. E. Derkachov; A. N. Manashov. On the spectrum of anomalous dimensions of composite operators in the scalar field theory. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 136-169. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a8/