On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 121-135

Voir la notice de l'article provenant de la source Math-Net.Ru

Various representations of the equation of minimal surface in $\mathbb R^3$ are considered. Properties of exact solutions are studied and a procedure to construct the corresponding conservation laws is suggested. Links between the solutions of this equation and those of the elliptic version of the Monge–Ampere equation are found. Bibl. – 19 titles.
@article{ZNSL_2010_374_a7,
     author = {E. Sh. Gutshabash},
     title = {On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/}
}
TY  - JOUR
AU  - E. Sh. Gutshabash
TI  - On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2010
SP  - 121
EP  - 135
VL  - 374
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/
LA  - ru
ID  - ZNSL_2010_374_a7
ER  - 
%0 Journal Article
%A E. Sh. Gutshabash
%T On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws
%J Zapiski Nauchnykh Seminarov POMI
%D 2010
%P 121-135
%V 374
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/
%G ru
%F ZNSL_2010_374_a7
E. Sh. Gutshabash. On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 121-135. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/