On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 121-135
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Various representations of the equation of minimal surface in $\mathbb R^3$ are considered. Properties of exact solutions are studied and a procedure to construct the corresponding conservation laws is suggested. Links between the solutions of this equation and those of the elliptic version of the Monge–Ampere equation are found. Bibl. – 19 titles.
			
            
            
            
          
        
      @article{ZNSL_2010_374_a7,
     author = {E. Sh. Gutshabash},
     title = {On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {121--135},
     publisher = {mathdoc},
     volume = {374},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/}
}
                      
                      
                    TY - JOUR AU - E. Sh. Gutshabash TI - On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws JO - Zapiski Nauchnykh Seminarov POMI PY - 2010 SP - 121 EP - 135 VL - 374 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/ LA - ru ID - ZNSL_2010_374_a7 ER -
%0 Journal Article %A E. Sh. Gutshabash %T On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws %J Zapiski Nauchnykh Seminarov POMI %D 2010 %P 121-135 %V 374 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/ %G ru %F ZNSL_2010_374_a7
E. Sh. Gutshabash. On equation of minimal surface in~$\mathbb R^3$: different representations, properties of exact solutions, conservation laws. Zapiski Nauchnykh Seminarov POMI, Questions of quantum field theory and statistical physics. Part 21, Tome 374 (2010), pp. 121-135. http://geodesic.mathdoc.fr/item/ZNSL_2010_374_a7/